INSTITUT ENERGETIKI LOGO

Прогноз развития энергетики мира и России 2019

Серия исследований "Мировая энергетика"

Серия исследований "Энергетика России"

Модельно-информационный комплекс SCANER

Новое в энергетике

Базовая кафедра Системных исследований энергетических рынков

СОВЕТ по приоритетному направлению НТР РФ

Прогноз НТР развития отраслей ТЭК РФ на период до 2035 г.

Главная » 7. Водородная энергетика

Водородная энергетика



Французы собираются построить гигафабрику по производству электролизёров (21-31 мая 2021)

Французская компания McPhy Energy SA, производитель щелочных электролизёров высокого давления и водородных заправочных станций, сообщила, о намерении построить к 2024 году в Белфорте, коммуне на северо-востоке Франции, гигафабрику электролизеров, которая будет производить 1 ГВт электролизёров в год. В настоящее время McPhy производит 300 МВт электролизеров на площадке в Италии.

Для создания гигафабрики потребуется порядка 40 миллионов евро. Её пуск поможет создать около 400 рабочих мест. Компания намерена принять окончательное инвестиционное решение к концу этого года, если получит государственную поддержку.

Министр экономики Франции Бруно Ле Мэр заявил, что гигафабрика явится первым крупным предприятием по производству электролизеров в рамках Национальной водородной стратегии Франции. Водородная стратегия Франции предусматривает установку 6,5 ГВт электролизёров до 2030 года (из 40 ГВт, суммарно планируемых ЕС в целом).

https://mcphy.com/en/press-releases/mcphy-gigafactory/

https://www.bloomberg.com/news/articles/2021-05-20/france-s-mcphy-plans-huge-new-factory-for-green-hydrogen-gear





Увеличение выбросов парниковых газов приводит к сокращению стратосферы (1-20 мая 2021)

Группа ученых продемонстрировала существование глобального сокращения стратосферы, связанного с увеличением содержания в атмосфере парниковых газов. Результаты были опубликованы 5 мая в научном журнале Environmental Research Letters. Парниковые газы вызывают потепление нижних слоев атмосферы (т.е. тропосферы) и в то же время охлаждение слоев, расположенных выше. В очень упрощенном виде, удерживая энергию вблизи земли, дополнительные парниковые газы лишают верхние слои атмосферы все большей доли тепла, излучаемого Землей. Это приводит к тому, что тропосфера расширяется, а стратосфера сжимается, а граница между ними - тропопауза - смещается в сторону все больших высот. Хотя набухание нижних слоев атмосферы относительно хорошо задокументировано, его аналог на более высоких уровнях в лучшем случае наблюдался на ограниченных территориях и в определенные периоды времени.

В новом исследовании ученые доказали наличие глобального и долгосрочного сокращения стратосферы. Структура атмосферы имеет следующий вид. Первый слой - тропосфера, от 0 до 12 км над уровнем моря (здесь и далее - цифры ориентировочные). Далее - стратосфера (12-50 км), мезосфера (50-80 км) и термосфера (80-600 км).

С использованием спутниковых наблюдений и математического моделирования авторы обнаружили, что с 1980 по 2018 год толщина стратосферы уменьшилась на 400 м. В основном это связано с похолоданием, вызванным увеличением концентрации парниковых газах в атмосфере. Озон играет лишь незначительную роль. Если выбросы не будут существенно снижаться, то к 2080 году ожидается дополнительное сокращение толщины примерно на 1,3 км. Такие изменения толщины и плотности в верхних слоях атмосферы не могут не отразиться на нашей деятельности на поверхности. Это может нарушить траектории спутников, на которых базируются многие службы, передачу радиоволн или даже правильное функционирование системы GPS.

https://new-science.ru/uvelichenie-parnikovyh-gazov-privodit-k-sokrashheniju-stratosfery/




BP установит на НПЗ в Испании электролизер для производства зеленого водорода (1-20 мая 2021)

Нефтегазовый концерн BP, энергетическая компания Iberdrola и испанская газовая компания Enagas заключили соглашение об изучении возможности строительства на нефтеперерабатывающем заводе BP в Кастельоне (Валенсия, Испания) крупной установки по производству экологически чистого водорода. Электролизер мощностью 20 МВт будет работать на ВИЭ, в том числе от фотоэлектрической станции мощностью 40 МВт. На дальнейших этапах мощность электролиза может быть увеличена до 115 МВт, что станет крупнейшим проектом по производству экологически чистого водорода в секторе нефтепереработки в Испании. Новый проект обеспечит замену серого водорода, который НПЗ использует при производстве биотоплива. Переход на зеленый водород позволит сократить выбросы CO2 на 24 тыс. т в год.

Планы на использование зеленого водорода на НПЗ уже не редкость. Так, в 2020 году BP и электроэнергетическая компания Ørsted подписали протокол о намерениях по проекту производства зеленого водорода, которое разместится на НПЗ Линген на северо-западе Германии, где планируется установить электролизёр мощностью 50 МВт.

https://www.iberdrola.com/press-room/news/detail/iberdrola-enagas-plan-develop-largest-green-hydrogen-project-region-valencia

https://gisprofi.com/gd/documents/bp-planiruet-ustanovit-elektrolizer-dlya-proizvodstva-zelenogo-vodoroda-na.html




В мире строятся электролизеры общей мощностью более 200 ГВт (1-20 мая 2021)

Консалтинговая компания Aurora Energy Research оценила масштаб строительства электролизных установок в мире. По представленным данным, сегодня в мире работают электролизеры общей мощностью всего 0,2 ГВт. Однако до 2040 года планируется реализовать проекты общей мощностью 213,5 ГВт - то есть в 1000 раз больше. При помощи этих мощностей можно производить до 32 млн. т водорода в год, то есть половину сегодняшней потребности в водороде.

Большинство проектов (85%) сконцентрировано в Европе. ЕС планирует к 2030 году установить 40 ГВт электролизеров, а национальные правительства Европы, включая Великобританию, уже зафиксировали в своих водородных стратегиях цели суммарно на 34 ГВт. Мировым лидером является Германия, на долю которой приходится 23% запланированной мощности электролизеров в мире. При этом проекты общей мощностью 30 ГВт уже прорабатываются, в том числе 4 ГВт в Великобритании.

Размеры проектов электролизеров быстро увеличиваются по мере развития технологии и цепочки поставок. Пока большинство проектов имеют мощность от 1 до 10 МВт, но к 2025 году размер типичного проекта будет составлять 100-500 МВт. Они, как правило, будут снабжать «локальные кластеры», то есть водород будет потребляться недалеко от места производства. Ожидается, что к 2030 году типовые проекты вырастут до 1 ГВт и более, в странах с дешевой электроэнергией появятся крупные проекты по экспорту водорода.
С точки зрения используемых источников энергии в большинстве проектов предполагается использование ветра, затем идет солнечная энергия, в остальных - «сетевая» электроэнергия. Что касается потребителей, то большая часть электролизеров нацелена на поставку водорода промышленности, второй по важности сегмент – транспорт. Ключевыми факторами успеха «электролизного» водорода являются стоимость и углеродный след конечной электроэнергии. Для минимизации углеродного следа электролизеры могут напрямую подключаться к возобновляемым источникам энергии, а не к сети.

21 апреля Европейская комиссия одобрила проект закона "EU Taxonomy Climate Delegated Act", содержащего новую классификацию «экологически чистого» водорода. Установлен лимит выбросов в 3 т CO2 / т H2. Для производства водорода с использованием электроэнергии из сети это соответствует углеродоёмкости электричества 53,3 кг CO2-экв / МВт∙ч. По оценкам Aurora Energy Research, этот относительно низкий порог к 2030 году смогут преодолеть только электросети Норвегии, Швеции и Франции.

https://auroraer.com/media/companies-are-developing-over-200-gw-of-hydrogen-electrolyser-projects-globally-85-of-which-are-in-europe/

https://gisprofi.com/gd/documents/v-mire-stroyatsya-elektroliznye-ustanovki-obshchej-moshchnostyu-bolee-200.html




Производство и хранение водорода стало проще благодаря нанотехнологиям (21-30 апреля)

Команда ученых из Национальной лаборатории Лоренса в Беркли (Berkeley Lab) Министерства энергетики (DOE) США открыли новый материал , называемый «стабильный на воздухе нано-композит магния» (air-stable magnesium nano-composites), который может значительно упростить хранение водорода. Этот композитный материал состоит из «наночастиц металлического магния, разбрызганных через матрицу полиметилметакрилата - полимера, родственного оргстеклу».

Этот нанокомпозит - гибкий материал, способный поглощать и выделять водород при обычной температуре без окисления металла. Эта возможность отмечается как важный шаг на пути создания лучших конструкций для производства и хранения водорода. Ученым впервые удалось успешно разработать наноразмерные композитные материалы, которые способны преодолевать специфические термодинамические и кинетические барьеры.

http://www.alternative-energy-news.info/hydrogen-generation-storage-nano-technology/




Завершен первый этап строительства подземного хранилища водорода на глубине 1000 м в ФРГ (11-20 апреля)

Немецкая энергетическая компания EWE сообщила о достижении первой вехи в строительстве испытательного подземного хранилища водорода в Рюдерсдорфе, Бранденбург, ФРГ.
Проведя установку 160 стальных труб на глубину до 1000 метров и их цементирование, EWE заложила основу для формирования небольшой испытательной каверны, которая будет устроена в соляном куполе (часть пласта каменной соли, внедрившаяся в виде купола в вышележащий пласт осадочных пород). EWE хочет проверить безопасность хранения 100-процентного водорода в создаваемой подземной полости. Полость в соляном куполе будет вымываться водой. Объём тестового хранилища составит всего 500 кубометров. EWE имеет большой опыт в создании и эксплуатации подземных хранилищ газа в соляных формациях и сегодня управляет 37 кавернами.

В рамках водородного проекта EWE сотрудничает с Немецким аэрокосмическим центром (DLR). Институт энергетических систем DLR будет изучать, среди прочего, качество водорода после его извлечения из каверны и используемых материалов (качество водорода будет замеряться при его закачке и заборе). Объем инвестиций составляет около десяти миллионов евро, из которых четыре миллиона — собственные средства EWE. Оставшуюся сумму EWE и DLR получат в рамках Национальной программы инноваций в области водородных технологий и топливных элементов от Федерального министерства транспорта и цифровой инфраструктуры.

Источники:

https://www.h2-view.com/story/ewe-to-explore-underground-100-hydrogen-storage/

http://decarbonization.ru/news/industry/ewe-issleduet-podzemnye-khranilishcha-100-vodoroda/