

Разработка технологии и промышленно-ориентированного оборудования для производства кремния электронного и солнечного качества электронно-пучковым рафинированием металлургического кремния с использованием струйного плазмохимического метода

ООО «Научно-технический центр «ПЛАЗМА» г. Новосибирск ФГБУН Институт Теплофизики им. С.С. Кутателадзе СО РАН г. Новосибирск ОАО «НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ ПОЛУПРОВОДНИКОВОГО МАШИНОСТРОЕНИЯ» г. Воронеж

Промышленные методы получения поликремния

Сименс-реактор (хлорсилановый процесс) — самая распространенная, экологически вредная, энергоемкая технология.

Фирмы: «GCL-Poly», «OSI», «Hemlok», «Tokuyama», «Wacker».

Объем мощностей производства: 300 000 тонн/год.

Реактор кипящего слоя — моносилановая, энергоэффективная технология. Представлена в промышленном масштабе только у одной фирмы *«REC»*. Очень сложна технологически.

Объем мощностей производства: 25 000 тонн/год.

Очистка кремния в ковше путем переплавки и направленной кристаллизации. Кремний получается грязнее, чем у вышеописанных технологий. Сравнительно новая и перспективная технология. Наиболее близка к предлагаемой нами технологии.

Фирмы: «Elkem Solar», «JACO».

Объем мощностей производства: 15 000 тонн/год.

Перспективные методы получения поликремния

Наиболее перспективным направлением металлургического подхода к рафинированию кремния является электронно-пучковый переплав (англ. EBM — Electron-Beam Melting) в комбинации с плазменной обработкой.

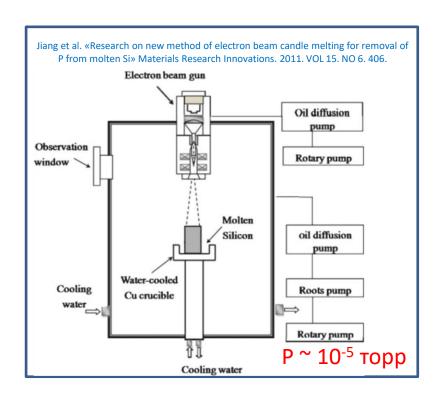
В отличие от химических путей получения поликремния в металлургическом подходе не используются химически вредные и взрывоопасные вещества.

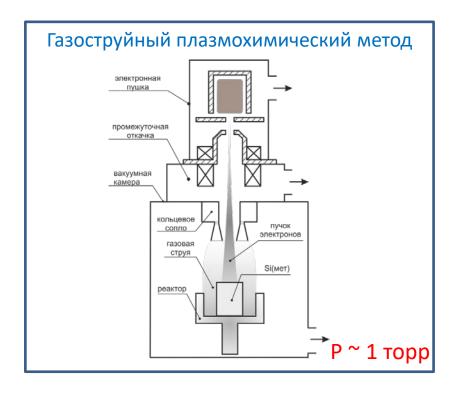
Такие работы пока не вышли из стен лабораторий, но уже получены обнадеживающие данные по энергоемкости, которая не превышает 15 кВт*ч/кг, что ниже всех существующих методов.

Основные команды, которые разрабатывают подобную предлагаемой в проекте технологию:

- JFE Steel Corporation (Япония);
- Kawasaki Steel Corporation (Япония);
- UniCamp (Бразилия);
- Advanced Materials and Devices Laboratory (Республика Корея);
- Key Laboratory for Solar Energy Photovoltaic System of Liaoning Province (Китай).

Компания	Расход сырья, кг/час	Мощность ЭП, кВт	Мощность плазмы, кВт	Уровень вакуума, торр	Удельные энергозатраты, кВт*ч/кг	Чистота Si, %
Kawasaki	5	100-300	150	-	50 - 90	99,9999
Kawasaki	50	750	700	-	29	99,9999
JFE Steel Corp.	2-12	20-80	-	5×10 ⁻⁴	6,6 - 10	P < 0.1 ppm
JFE Steel Corp.	16-70	80-250	-	6×10 ⁻⁴	3,5 - 5	P < 0.1 ppm
НТЦ «Плазма»*	10	15	10	1	2,5	Не менее 99,9999

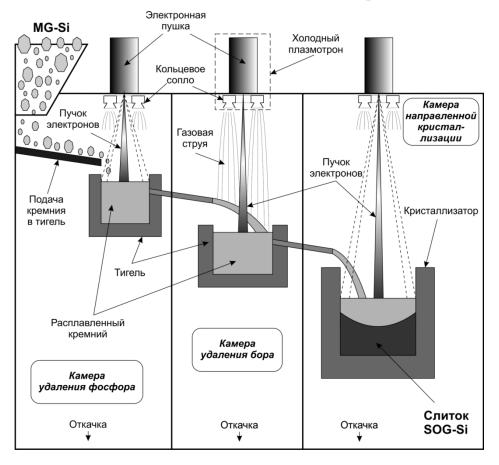

^{*} Предполагаемые параметры технологии.


Рафинирование металлов с помощью пучков электронов давно вышло на промышленный уровень. Но этот способ рафинирования основан на использовании глубокого вакуума, что приводит к огромным габаритам установок и большим затратам на вакуумное оборудование.

Основные преимущества предлагаемой технологии:

- Отказ от больших заводов, переход на модульный принцип (меньшие площади производства, поэтапный запуск производства);
- Отказ от использования химически вредных и взрывоопасных веществ (экологически безопасная технология, снижение требований безопасности производства);
- Низкая энергоемкость процесса (не требует огромных электрических мощностей для организации производства);
- Снижение в разы капитальных затрат (быстрая окупаемость).

Сравнение с ближайшим аналогом



Основные преимущества нашего метода:

- Менее глубокий уровень вакуума в реакционной камере, связанный с использованием газового затвора, существенно сокращает затраты на откачное вакуумное оборудование и снижает себестоимость получаемой продукции;
- Возможность управления, контроля и модификации процесса рафинирования за счет проведения плазмохимических реакций, путем введения необходимых веществ в процесс в виде струи, помимо испарения и переплавки материала электронным пучком;
- Выполнение полного комплекса очистки кремния с использованием однотипного электронно-пучкового оборудования.

Схема блока рафинирования опытно-промышленной установки

Очистка металлургического кремния состоит из трех этапов:

- Дефосфоризация кремния, за счет перевода его в газовую фазу и удаления при помощи вакуумных насосов*.
- 2. Удаление бора, за счет перевода его в летучие оксиды (ВО, В₂О₃) или гидраты при использовании плазмохимических реакций*.
- 3. Направленная кристаллизация, поддерживаемая сканирующим электронным пучком, позволяет избавиться от труднолетучих примесей.

Основные параметры процесса:

- Ускоряющий потенциал до 30 кэВ;
- Ток пучка электронов до 0,5 А;
- Давление от 0,001 до 1 торр.

*также происходит частичная очистка от металлических примесей, что подтверждают результаты исследований

Технические требования к опытно-промышленной установке

Параметр	Значение
Производимый продукт	Кремний солнечного качества (99,9999%)
Сырье	Металлургический кремний (98%)
Производительность опытно-промышленной установки (ОПУ), т/год	80
Количество холодных плазмотронов в модуле, штук	3
Режим работы, часов/год	8000
Расход металлургического кремния, т/год	100
Энергозатраты на процесс получения кремния солнечного качества, кВт*час/кг	50
Коэффициент переработки сырья, %	80
Рабочее давление в плазмохимическом реакторе ОПУ, торр	до 1
Площадь для размещения модуля, м²	40
Прогнозируемая себестоимость продукта на ОПУ, руб./кг (\$/кг)	491,1 (8,18)
Прогнозируемая себестоимость продукта на серийной промышленной установке, руб./кг (\$/кг)	439,0 (7,32)

Промышленное производство кремния

Исходный продукт — металлургический кремний (чистота 98-99%) Производители металлургического кремния

	ЗАО «Кремний» г.Шелехов, Иркутская область		
Россия	ООО «СУАЛ-Кремний-Урал» г.Каменск-Уральский, 70 000 тонн/год		
	Свердловская область		
Республика	TOO "MK "Kaz Silicon» г.Уштобе		
Казахстан	TOO «Tau-Ken Temir» г.Караганда	28 000 тонн/год	

Конечный продукт – поликристаллический кремний солнечного качества (чистота 99,9999% - «2nd Grade PolySilicon (6N-8N)»

Промышленное производство поликристаллического кремния

Россия	нет
Республика Казахстан	нет
Мировое	350 000 тонн/год

Потребители поликристаллического кремния в России и Республике Казахстан

в области солнечной энергетики

	Основные потребители поли кремния	Запрос на поставки поликремния	Количество установок, обеспечивающих потребность, шт.	
Россия	ООО «Гелиос-Ресурс»	1800 тонн/год по цене 10-16 \$/кг	29	
КИЈЈОЧ	ООО «Солар Системс»	550 тонн/год по цене 14 \$/кг	25	
Республика Казахстан	TOO «Kazakhstan Solar Silicon»	400 тонн/год	5	

Количество установок, шт.	1	35
Стоимость проекта, млн. руб. (млн.\$)	150 (2,50)	1 900 (32)
Срок окупаемости, лет (с момента запуска производства продукции)	5	2

Экономические показатели проекта

Цена металлургического кремния марки «Silicon 553 min 98.8% fob China» **91 руб./кг (1,54 \$/кг)**

Себестоимость поликристаллического кремния

Расходы на 1 кг кремния	1 установка	35 установки
Амортизация основного оборудования	142,9 руб./кг (2,382 \$/кг)	91,71 руб./кг (1,53 \$/кг)
(7 лет)	109,2 руб./кг (1,820 \$/кг)	109,2 руб./кг (1,82 \$/кг)
(80% использование)		
Энергозатраты на процесс	175 руб./кг (2,917 \$/кг)	175 руб./кг (2,92 \$/кг)
(50 кВт*ч/кг при стоимости 1 кВт*ч – 3,5 руб.)		
Ремонт основных средств	2,50 руб./кг (0,042 \$/кг)	1,60 руб./кг (0,027 \$/кг)
(1,75% от стоимости оборудования)		
Расходные материалы	5,46 руб./кг (0,091 \$/кг)	5,46 руб./кг (0,091 \$/кг)
(5 % от стоимости основного сырья)		
ФЗП сотрудников	56 руб./кг (0,933 \$/кг)	56 руб./кг (0,933 \$/кг)
(5 сотрудников на одну установку)		
Себестоимость поликремния	491,1 руб./кг (8,18 \$/кг)	439,0 руб./кг (7,32 \$/кг)

Средняя цена поликремния марки «2nd Grade PolySilicon (6N-8N)» **846 руб./кг (14,1 \$/кг)**

Лабораторная проверка метода

Элемент	Содержание примеси, ppm	Требования к солнечному кремнию,	
		ppm	
Al	< 0,1	0,1	
Mg	< 0,1	0,1	
Fe	< 0,1	0,1	
Ti	< 0,1	0,1	
Cr	< 0,05	0,1	
Cu	< 0,02	0,1	
Ni	< 0,05	0,1	
Мо	< 0,1	0,1	
Со	< 0,06	0,1	
Mn	< 0,01	0,1	
Zn	< 0,7	0,1	
В	< 0,05	1	
Р	< 1	0,6	

[&]quot;<" — означает, что эта величина является пределом обнаружения соответствующего элемента, т.е. реальная концентрация примесей может быть меньше.

Полученные результаты

(электронно-пучковый переплав)

Электронный пучок: U=6кB; I=100mA; P=600 Вт

Давление в реакторе: Ph=0,01 торр

Навеска mg-Si = 6 г

Элемент	mg-Si исходный,	Si верх тигля,		Требования к SoG-Si*,
	ppmw	ppmw	ppmw	ppmw
Al	6,1	10	4,6	0,5
Ва	0,2	1,9	0,2	0,6
Ca	30	4,2	31	0,2
Со	< 2	28	< 2	0,1
Cr	3,4	120	6,5	0,1
Cu	7,5	32	2,5	0,1
Fe	760	11000	380	0,5
Mn	130	20	32	0,1
Na	9	< 6	< 6	0,2
Nb	10	98	2,6	0,1
Ni	31	480	14	0,5
Sn	14	34	16	0,1
Та	< 20	51	< 20	0,1
Ti	45	14000	140	0,2
V	120	1200	33	0,1
Zr	1,8	27	0,6	0,1
В	700	600	20	1
Р	< 10	< 10	< 10	0,6

^{*}Фалькевич Э.С., Пульнер Э.О., Червоный И.Ф. Технология полупроводникового кремния. – М.: Металлургия, 1992. – 408 с.

НТЦ «Плазма»

630055, г. Новосибирск, ул. М.Джалиля 3/1 оф. 8б ИНН 5408016285, КПП 540801001, ОГРН 1175476072705

e-mail: stc.plasma@mail.ru

- Генеральный директор, к.т.н. Городецкий Сергей Александрович Тел.: +7 (913) 986 97 17
- Коммерческий директор Миллер Алексей Александрович Тел.: +7 (913) 955 74 88
- Директор по развитию Быченок Алексей Вячеславович Тел.: +7 (913) 750 24 42

- Директор по науке, д.ф.-м.н.
 Шарафутдинов Равель Газизович
 Тел.: +7 (913) 470 10 35
- Ведущий специалист Константинов Виктор Олегович Тел.: +7 (913) 791 31 75
- Ведущий специалист Щукин Виктор Геннадьевич Тел.: +7 (913) 928 03 94