ВЛИЯНИЕ СТЕПЕНИ ДЕТАЛИЗАЦИИ ХАРАКТЕРИСТИК ОБЪЕКТОВ ЭЛЕКТРОЭНЕРГЕТИКИ НА РЕЗУЛЬТАТЫ МОДЕЛИРОВАНИИ РАБОТЫ ЭНЕРГОСИСТЕМ

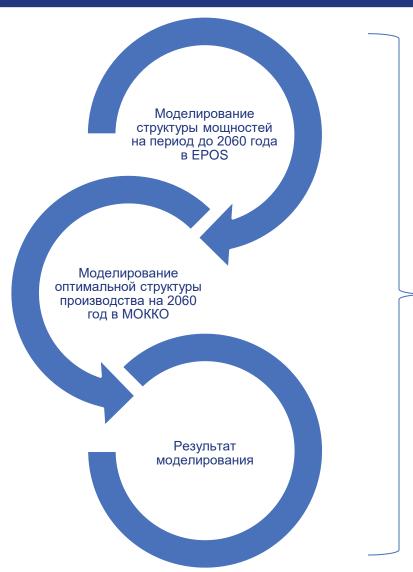
Люшнин Л.С., Городилов М.А., Аликин Р.О.

VII Всероссийская (с международным участием) научно-практическая конференция «Проблемы и перспективы развития энергетики»

Казань, октябрь 2025 г.

Исследование выполнено в ИНЭИ РАН за счет гранта Российского научного фонда № 21-79-30013-П, https://rscf.ru/project/21-79-30013/

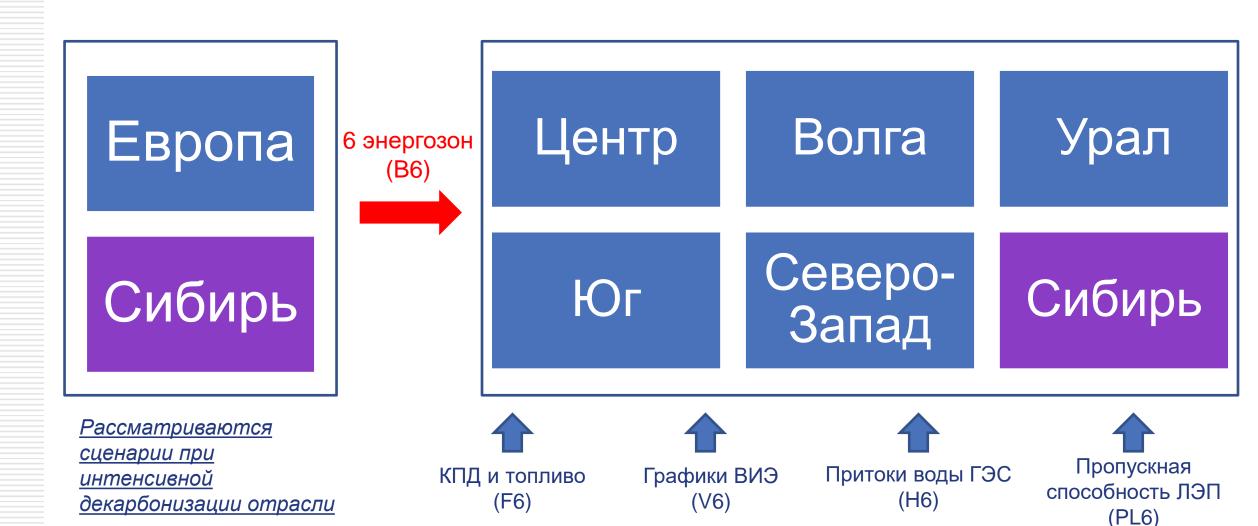
Проблема исследования



Необходимо оценить влияние детализации исходных данных на результаты моделирования

Последовательное моделирование сценариев позволяет оценить влияние отдельных факторов, связанных с изменением состава энергозон и учетом особенностей режимов работы и эксплуатационных затрат электростанций в каждой из них

Описание модельного инструмента



Soft link интеграция моделей EPOS – линейная динамическая оптимизационная модель развития энергетики: определение оптимальной структуры генерирующих мощностей на основе системы территориальных годовых балансов электроэнергии, централизованного тепла и основных видов топлива по критерию минимума суммарных затрат

МОККО – линейная динамическая оптимизационная модель коммерческой диспетчеризации: определение оптимальной выработки имеющихся мощностей на основе почасовых балансов по критерию минимальных переменных затрат

Описание моделируемых сценариев

Источник: расчеты ИНЭИ РАН

Результаты моделирования

Технология	Европа						Сибирь					
	N _{yct}	КИУМ, %					N _{yct}	КИУМ, %				
	ГВт	B6	F6	V6	H6	PL6	ГВт	B6	F6	V6	H6	PL6
ТЭЦ газ, в т.ч.:												
ПТУ	15,8	44,1	48,3	48,3	48,3	46,7	0,4	42,8	42,8	42,8	42,8	42,7
ПГУ	3,7	62,3	66,2	66,2	66,1	68,6	0	-	-	-	-	-
ГТУ	36,8	42,3	43,1	43,1	43,1	42,9	7,5	42,8	45,3	45,3	45,6	46,0
ГПА	1,0	60,4	58,2	57,9	57,9	62,7	0,1	58,3	58,4	58,4	58,2	48,1
ТЭЦ ПТУ уголь	1,0	45,1	47,6	47,6	47,5	47,8	6,1	93,1	93,1	93,1	93,1	93,1
Био-ТЭЦ	0,01	91,1	87,3	87,3	87,7	80,3	-	-	-	-	-	-
КЭС газ, в т.ч.:												
ПТУ	8,4	38,8	36,1	35,9	36,1	30,7	0,02	0,5	14,7	14,7	14,7	14,8
ПГУ	37,5	80,0	77,4	77,4	77,3	82,0	7,1	59,9	61,1	61,3	61,8	53,6
ГТУ	20,6	20,9	18,5	18,4	18,4	25,5	0,7	0,6	15,3	15,3	15,3	14,9
КЭС ПТУ уголь	1,2	<u>29,8</u>	60,6	60,6	60,7	<u>62,7</u>	2,0	84,2	84,2	84,2	84,2	84,2
АЭС	68,9	91,7	91,7	91,7	91,7	90,3	7,7	91,7	91,7	91,7	91,7	91,7
АТЭЦ	-	-	-	-	-	-	0,2	91,7	91,7	91,7	91,7	91,7
ВЭС	140,2	29,3	29,3	29,3	29,3	28,8	23,4	20,1	20,1	20,1	20,1	20,1
СЭС	119,8	18,7	18,7	18,8	18,8	15,9	25,3	24,6	24,6	24,6	24,6	24,6
ГЭС	19,3	36,1	36,1	36,1	36,0	35,9	50,6	47,7	36,1	36,1	36,0	35,9
СНЭЭ	76,0	7,7	9,2	9,3	9,3	9,9	13,5	0,6	1,3	1,3	1,3	1,0
ГАЭС	4,1	1,0	1,3	1,3	1,3	3,2	-	-	-	-	-	-

«Сливы» воды на ГЭС и эффект «curtailment»

Возникли локальные дефициты в Европейской части (в ОЭС Юга) внутри года на 648 млн. кВт-ч

Основные выводы

- Детализация исходных данных значительно изменила результаты решения моделей энергосистемы на 2060 год
- Подробное представление технологических показателей работы электростанций влияет на моделирование всей энергозоны
- Пространственная детализация показала наличие проблем с «гибкостью» энергосистемы из-за ограничений пропускной способности ЛЭП
- Для ликвидации обнаруженных проблем с «гибкостью» возможно использовать инвестиционный режим МОККО

Институт энергетических исследований РАН

www.eriras.ru info@eriras.ru

Спасибо за внимание!