Всероссийская научно-практическая конференция «Структурно-технологическая и цифровая трансформация промышленности Росси», ИНП РАН

Проблемы определения макроэкономических последствий HTP в секторах экономики. Оценка мультипликативных эффектов роста тарифов и инвестиций в электроэнергетике

Малахов В.А., к.э.н. Институт Энергетических Исследований РАН

2 октября 2025 г.

- Народнохозяйственные последствия технологического развития целесообразно оценивать для системообразующих секторов экономики (отраслей).
- Примеры таких секторов: электроэнергетика, сухопутный транспорт их продукция (товары или услуги) потребляется всеми субъектами экономики.
- Они оказывают заметное влияние на производственную и инвестиционную активность в стране, темпы инфляции, доходы и расходы госбюджета и домашних хозяйств.

Народнохозяйственный эффект включает в себя прямой и косвенный (макроэкономический) эффекты, причем косвенный эффект может в разы превышать прямой.

Прямой эффект — это изменение добавленной стоимости рассматриваемой отрасли из-за роста её инвестиций в модернизацию и расширение производственных мощностей или опережающего роста цен на её продукцию.

Макроэкономический эффект - это мультипликативное изменение масштабов производства в стране под влиянием ценовой и инвестиционной политики в системообразующей отрасли. Он включает в себя две противоположнонаправленные составляющие:

- 1. Ускорение динамики экономики страны из-за роста инвестиций в рассматриваемой отрасли.
- 2. Торможение динамики экономики страны из-за удорожания продукции отрасли

ВВП - основной макроэкономический показатель СНС. Поэтому под **макроэкономическим эффектом** часто понимают **чувствительность динамики ВВП к возмущениям** со стороны рассматриваемой отрасли (Динвестиций, Дцен и пр.).

ВВП = валовая добавленная стоимость (ДС) всех секторов + чистые налоги на продукты в экономике (акцизы + НДС + таможенные пошлины - субсидии на продукты).

$$\mathcal{L}C = BB - \Pi\Pi$$
,

где: ВВ – валовой выпуск экономики в основных ценах,

ПП – промежуточное потребление (т.е. потребление товаров и услуг на текущие производственные нужды) в стране.

Таким образом, ВВП - это стоимость всей конечной продукции, производимой экономикой за год. Вместе с импортной продукцией (И) она используется в экономике для конечного потребления (КП) (населением, госучреждениями и НКО), капвложений (КВ) (валовое накопление основного капитала), прироста оборотных запасов (3) и экспорта (Э).

Поэтому производство и использование ВВП в основных ценах (без налогов на продукты) можно представить в виде укрупненного годового балансового соотношения:

$$\mathcal{L}C + \mathcal{U} = BB - \Pi\Pi + \mathcal{U} = K\Pi + KB + 3 + 9 \tag{1}$$

Пример: пусть в экономике И = 0, и запасы производственных мощностей всех отраслей не ограничены, у всех секторов $\Pi\Pi/BB = n = 50\% = >$

Если в какой-либо отрасли возникает Δ KB = 100 руб. => то на первом уровне межотраслевого сопряжения (i=1) он порождает: Δ BB₁ = 100 руб. и Δ ПП₁ = 50 руб. => Δ ДС₁ = 50 руб.

На втором уровне сопряжения (i=2): $\triangle BB_2 = 50$ руб. и $\triangle \Pi\Pi_2 = 25$ руб. => $\triangle \Pi C_2 = 25$ руб.

В итоге:
$$\sum_{i} \Delta Д C_{i} \rightarrow \Delta KB = 100 \ py \delta$$
., а $\sum_{i} \Delta BB_{i} \rightarrow \frac{\Delta KB}{(1-n)} = 200 \ py \delta$.

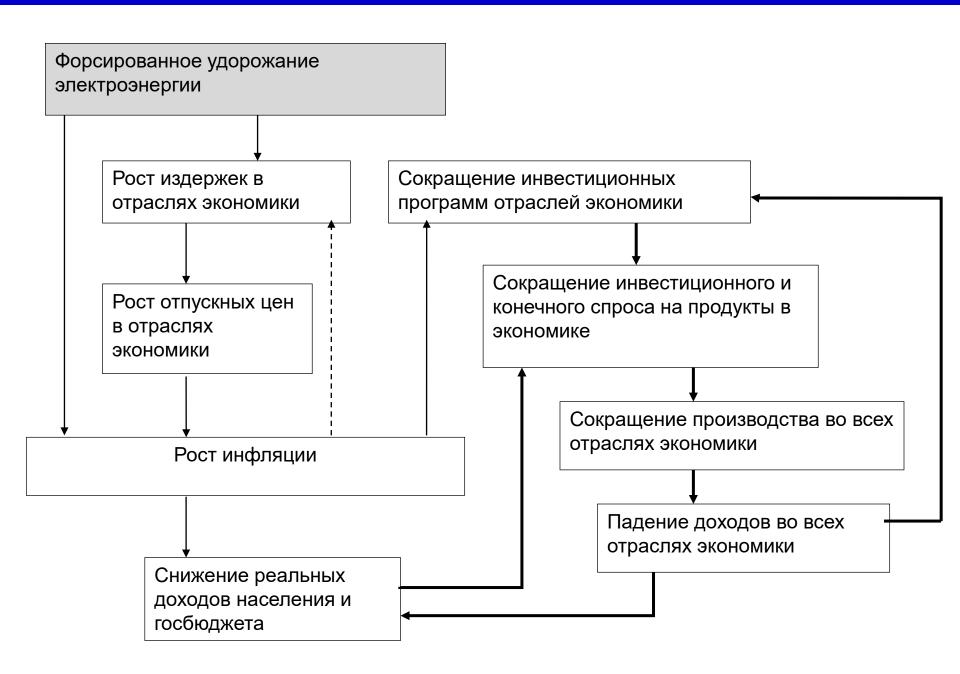
т.е. в рассмотренном примере мультипликативный эффект для ВВП (M = Δ BВП/ Δ KВ) не возникнет, вернее, инвестиционный мультипликатор M =1.

В реальной экономике **в рамках одного года** инвестиционный мультипликатор для ВВП в подавляющем большинстве случаев будет меньше единицы (M<1), поскольку

- Практически во всех отраслях используются импортная продукция на текущие и инвестиционные нужды.
- Производственные мощности в отраслях ограничены, поэтому при значительных инвестиционных потребностях в какой-либо отрасли отечественная экономика сможет за один год произвести только часть запрашиваемой инвестиционной продукции, остальная часть будет импортирована (т.е. будет произведена экономиками других стран). А лаги капитального строительства (для возведения производственных мощностей) у большинства отраслей заметно больше одного года.

<u>Значительный мультипликативный инвестиционный рост ВВП может проявиться</u> только в среднесрочном и долгосрочном периоде.

При этом М>>1 может быть по двум причинам:


- 1. Когда для удовлетворения инвестиционных потребностей в какой-либо отрасли необходимо настолько увеличить производство в экономике, что это, в свою очередь, потребует наращивания производственных мощностей и соответствующих инвестиций в смежных отраслях и по цепочке межотраслевых связей и других отраслях экономики.
- 2. Рост инвестиций и производства в экономике приводит к росту доходов населения и государства, что, в свою очередь, вызывает значительный рост конечного потребления домашних хозяйств и госучреждений.

Таим образом, мультипликативный эффект возникает **только** когда рост конечного спроса в какой-либо отрасли способен вызвать дополнительное увеличение конечного спроса (капвложений или конечного потребления) у других секторов экономики.

Межотраслевой мультипликативной эффект реализации инвестиционных программ в отраслях экономики

Мультипликативное воздействие цен электроэнергии на экономику

Инструменты исследований макроэкономических эффектов в экономике

МОБ – методическая основа исследований мультипликативных эффектов (М) в экономике - это набор балансовых соотношений типа (1) для различного числа продуктов и отраслей, публикуемых Росстатом:

- таблицы ресурсов и использования товаров и услуг в разрезе 61 продуктов х 61 отраслей в текущих ценах (опубликованы для каждого ретроспективного года вплоть до 2020 г);
- базовые таблицы «затраты выпуск» в разрезе 243 продуктов х 120 отраслей (публикуются раз в 5 лет: в России опубликованы всего 3 таблицы: для 2011г, 2016г и 2021г).

Отчетные таблицы МОБ не позволяют в полном объеме оценить мультипликативные эффекты в экономике (для ВВП всегда M<1, хотя для выпуска может быть M>1).

Для комплексной оценки М, помимо продуктовых балансов, следует в явном виде рассматривать финансовые балансы отраслей, балансы доходов и расходов госбюджета и домашних хозяйств.

Необходимо учитывать зависимость производственных мощностей в отраслях от их инвестиций (капиталоемкость основных фондов и фондоотдачу в отраслях), зависимость доходов и расходов государства и населения от динамики производства и финансового состояния отраслей.

Для этого разрабатываются и используются математические модели большой размерности: VAR-модели, динамические GE-модели. Они широко используются за рубежом и в России для ретроспективных и прогнозных исследований мультипликативных эффектов.

- Оценки полученные для других стран, некорректно использовать для России, поскольку они не учитывают межстрановые различия (климатические условия, отраслевая структура экономики и др.).
- Отечественные ретроспективные оценки на основе таблиц МОБ за конкретный год (или ретроспективный период) как правило, не учитывают фактор времени. Иначе говоря, расчет ведется в заданной ретроспективной структуре экономики.
- Однако НТР отраслей рассчитано на долгосрочную перспективу, оно не только подразумевает, но и рассчитывает повлечь за собой изменения в технологической и отраслевой структуре экономики страны.

Методика исследований

С проблемой оценки мультипликативных эффектов при изменениях структуры экономики на длительном интервале помогает справиться **сценарный подход**, т.е. разработка сценария развития экономики страны на долгосрочную перспективу.

VAR-модели для этого не подходят, т.к. требуют наличия длинных статистических рядов с множеством устойчивых взаимосвязей между разнородными показателями экономики. При этом ретроспективное плечо должно быть минимум в 2 раза длиннее прогнозного периода. HTP отраслей обычно охватывает перспективу в 20-30 лет, => использование VAR-моделей потребовало бы наличия минимум 40-летней ретроспективы в условиях стабильно развивающейся экономики.

В исследованиях макроэкономических последствий сценариев развития отраслей ТЭК мы используем оптимизационные и имитационные межотраслевые GE-модели

- Для оценки мультипликативных эффектов HTP в отраслях необходимо формировать минимум 2 сценария развития экономики на долгосрочную перспективу.
- Первый (опорный) сценарий либо не должен предусматривать каких-либо последствий НТР отрасли (например. электроэнергетики), либо предполагать инерционную сложившуюся в ретроспективе динамику развития.
- Второй сценарий, как правило, формируется при помощи задаваемых возмущений на результаты расчетов, полученных в опорном сценарии (расчёты "в разностях") и должен включать в себя все параметры ценовых и инвестиционных возмущений в электроэнергетике, связанных с изменением стратегии её технологического развития.
- В результате мультипликативный макроэкономический эффект определяется при помощи сравнения расчетных значений ключевых показателей отечественной экономики по двум сценариям.

Пример расчтёных результатов

Факторы возмущения динамики ВВП	2030	2035	2040	2045	2050
Опорный сценарий*					
Реальный рост ВВП за период, <i>% к 2025 г.</i>	115,1	133,3	154,5	179,1	207,6
Индекс внутренней цены газа (5% в год), <i>% отн. 2025 г.</i>	127,7	162,9	208,0	265,4	338,8
Индекс цены электроэнергии (по ИПЦ), % отн. 2025 г.	121,7	148,1	180,2	219,2	266,7
Годовые капвложения в электроэнергетике, млрд.руб. в ценах 2021 г	928,1	1356,5	1496,9	1487,1	1650,5
Возмущение цены газа отн. опорного сценария					
Δ индекса цены газа, п.п.	6,2	16,1	31,7	55,3	90,4
∆ роста ВВП, п.п.	-0,5	-1,3	-2,4	-4,1	-6,3
Коэффициент чувствительности роста ВВП, %/%	-0,084	-0,081	-0,076	-0,073	-0,069
Возмущение цены электроэнергии отн. опорного сценария					
Δ индекса цены, п.п.	23,3	56,4	118,4	157,0	210,0
Δ роста ВВП, п.п.	-3,5	-7,7	-13,9	-17,9	-22,5
Коэффициент чувствительности роста ВВП, %/%	-0,150	-0,137	-0,117	-0,114	-0,107
Возмущение капвложений в электроэнергетике					
∆ годовых капвложений, млрд.руб. в ценах 2021 г.	130,5	365,5	447,5	424,4	478,8
Δ роста ВВП, п.п.	0,4	2,3	3,6	4,6	6,0
Одновременное действие всех факторов					
Рост ВВП за период, % к 2025 г.	111,5	128,5	142,9	163,8	188,5
Δ с опорным сценарием, п.п.	-3,6	-4,8	-11,6	-15,3	-19,1

^{*} Опорный сценарий соответствует базовым оценкам МЭР на период до 2036 г. и Стратегии низкоуглеродного развития России до 2050 г.

Спасибо за внимание