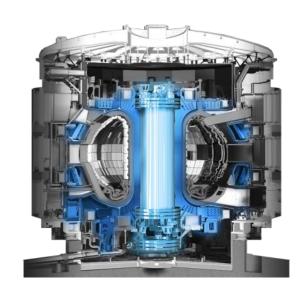
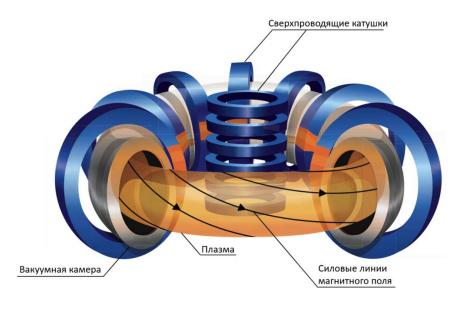


МЕТОДИКА ИЗМЕРЕНИЯ ПУЛЬСАЦИЙ В БЫСТРОИЗМЕНЯЮЩЕМСЯ МАГНИТНОМ ПОЛЕ

Лоцманов Матвей Владимирович


Рахимов Р.Ф.


Перцев И.П.

к.т.н. Беляев И.А.

Введение

Исследование магнитогидродинамических течений жидких металлов актуально в контексте разработки систем охлаждения для термоядерных реакторов. Одной из ключевых проблем являются срывы плазмы, которые генерируют интенсивные нестационарные МГД-возмущения в электропроводящем теплоносителе [1], способные привести к значительным динамическим нагрузкам на конструкционные элементы [2].

- 1. ITER EDA N. J. W. S. et al. MHD stability, operational limits and disruptions. 1999.
- 2. Поддубный И. И. и др. Опасные режимы теплообмена при течении жидкого металла в вертикальных трубах и каналах в условиях термоядерного реактора //ВАНТ. Сер. Термоядерный синтез. 2015. Т. 38. №. 3. С. 5-15.

Перспективные датчики в заданных условиях задачи

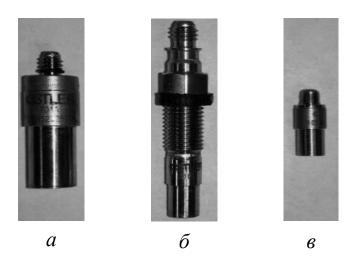


Рис.1. Датчики давления Kistler: a - 701A, δ - 601A, ε - уменьшенная версия 601A

Рис.2. Оптоволоконный датчик давления с мембраной и без нее

Рис.3. Фотоэлектронный умножитель и источник лазера

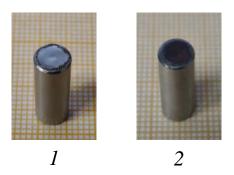


Рис. 4. Мембраны для оптоволоконного датчика: 1 — нержавеющая сталь, 2 — тантал

Метод и процесс получения калибровочной зависимости

Калибровка датчиков проводилась на калибраторе давления ЭЛЕМЕР-АКД-12КИ (рис.8).

Для исследования влияния магнитного поля на датчики использовался электромагнит на базе РК-3 (рис.9) [1].

Рис.5. ЭЛЕМЕР-АКД-12КИ

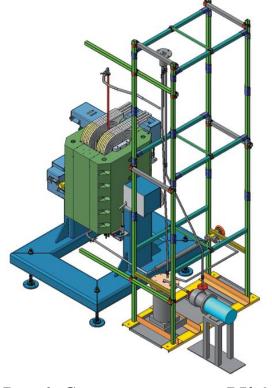


Рис. 6. Схема установки РК-3

Рис.7. Расположение датчика в магните

1. Беляев И. А. и др. Экспериментальный стенд для исследований теплообмена перспективных теплоносителей ядерной энергетики. Теплоэнергетика, (11), 66-74 (2017).

Результаты по калибровке

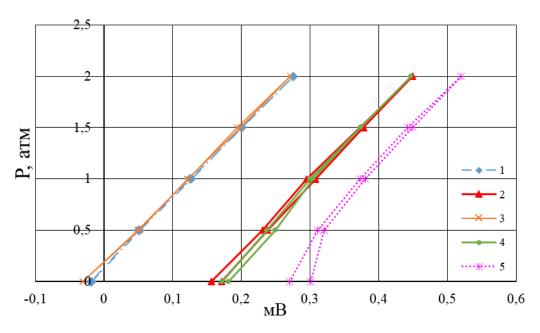


Рис. 8. Калибровка Kistler 601A:

1- без магнитного поля, 2-в МП ($B=1\,$ Тл),

3 – сразу после отключения магнитного поля,

4 – повторно в МП (B=1 Тл),

5 - в магнитном поле (B = 1, 7 $T_{\rm I}$).

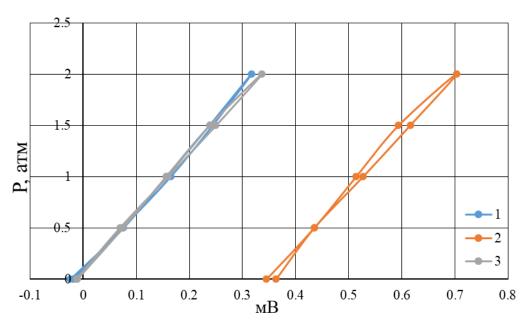


Рис. 9. Калибровка уменьшенной версии Kistler 601A:

1 — без магнитного поля,

2 - в магнитном поле (B = 1.7 Тл),

3 – сразу после отключения магнитного поля

Оптоволоконный датчик давления: выбор материала мембран

Требования к датчикам по [1]:

- 1. Чувствительная часть датчика должна иметь минимальные размеры, следовательно, материал мембраны должен быть таким, чтобы можно было изготовить ее минимальной толщиной с сохранением стабильных упругих свойств.
- 2. Резонансная частота мембраны наивысшая, для достижения высокого временного разрешения и точного измерения быстроменяющихся процессов.
- 3. Система регистрации мембраны должна быть высокочувствительной, чтобы улавливать чрезвычайно малые сигналы

Материал	μ	Е, ГПа	ρ, г/см ³	h, мкм	$\mathbf{f}_{\mathtt{pes}}$
AISI 304	0.3	200	7.85	20	168.69
Тантал	0.35	186	16.65	20	140.83
Стекло	0.3	83	2.2	20	138.62
Алюминий	0.34	69	2.7	20	93.47
Керамика	0.26	400	3.9	20	274.77
Свинец	0.44	18	11.34	20	36.75

Табл. 1. Свойства материалов

1. Жилин В. Г. и др. Оптико-механические преобразователи давления //Теплофизика высоких температур. -1979. - Т. 17. - №. 5. - С. 1064-1068.

Оптоволоконный датчик давления: выбор материала мембран

Прогиб у в центре мембраны [1]

$$y = \frac{3}{16}p \frac{1 - \mu^2}{Eh^3},$$

Частота собственных колебаний $f_{\rm pes}[1]$

$$f_{\text{pes}} = \frac{10,21h}{r^2} \left(\frac{E}{12(1-\mu^2)\rho}\right)^{1/2}$$

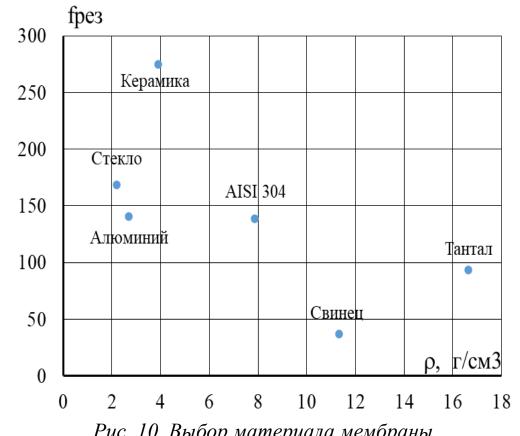


Рис. 10. Выбор материала мембраны.

1. А. Н. Филиппов. Колебания деформируемых систем. «Машиностроение», 1970.

Вывод

- На построенных кривых для датчиков давления Kistler 601A и ее уменьшенной версии наблюдается смещение, обусловленное воздействием магнитного поля на датчик. Заметна относительная стабильность калибровочных кривых с сохранением линейности и угла наклона.
- Учитывая требования к мембранным датчикам [1] следует выбрать не керамику или стекло, основываясь на высокой f_{pes} , в качестве материала для мембраны, а тантал или нержавеющую сталь, т.к. они имеют хорошие упругие свойства.
- Наиболее перспективная технология по измерению пульсаций давления является оптоволоконный датчик. На данный момент введутся работы по воссозданию технологии.

^{1.} Жилин В. Г. и др. Оптико-механические преобразователи давления //Теплофизика высоких температур. -1979. - Т. 17. - №. 5. - С. 1064-1068.

СПАСИБО ЗА ВНИМАНИЕ!

Работа выполнена при поддержке гранта РНФ №25-19-00642 "МГД течения при быстро меняющихся сильных магнитных полях и электрических пробоях в жидкость" от 29.05.2025