

ОСОБЕННОСТИ ПРАКТИЧЕСКОГО ПРИМЕНЕНИЯ

СУПЕРКОНДЕНСАТОРНОГО НАКОПИТЕЛЯ ЭНЕРГИИ

МОЩНОСТЬЮ 7 МВТ В ЭЛЕКТРИЧЕСКОЙ СЕТИ

ПРОМЫШЛЕННОГО ПРЕДПРИЯТИЯ

В 2024 ГОДУ ВВЕДЕНА В РАБОТУ СИСТЕМА НАКОПЛЕНИЯ ЭЛ. ЭНЕРГИИ (СНЭЭ)

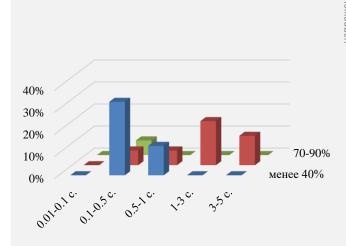
ПРЕДПОСЫЛКИ К УСТАНОВКЕ СНЭЭ

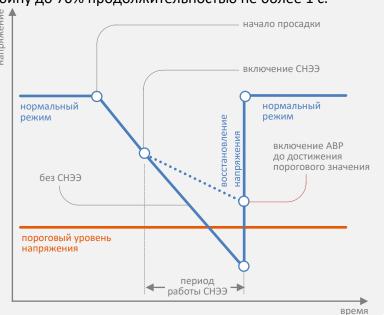
Высокая маржинальность установок и высокая стоимость простоя

60% провалов напряжения происходит из-за возмущений во внешней сети

На ГПП, к шинам которой присоединена по проекту СНЭЭ, происходили инциденты в среднем 2 раза в год

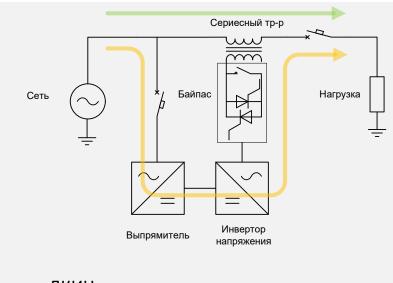
Системы БАВР не эффективны при потере напряжения по 2 вводам или если они электрически близки

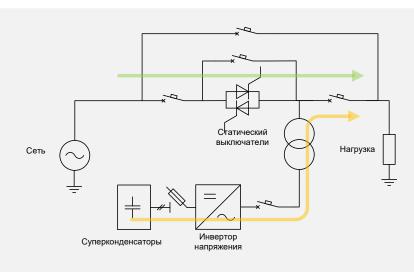



Ремонт, реконструкция, цифровизация собственного оборудования не снижают отказы по причинам внешней сети

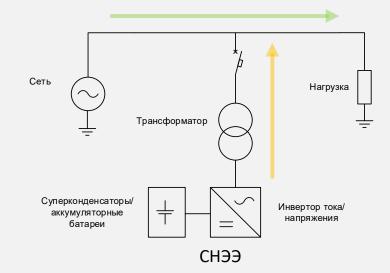
АНАЛИЗ ПРОВАЛОВ НАПРЯЖЕНИЯ

Повышение надежности энергоснабжения технологических установок через предотвращение критического провала напряжения за счет мгновенной кратковременной выдачи электрической энергии в сеть

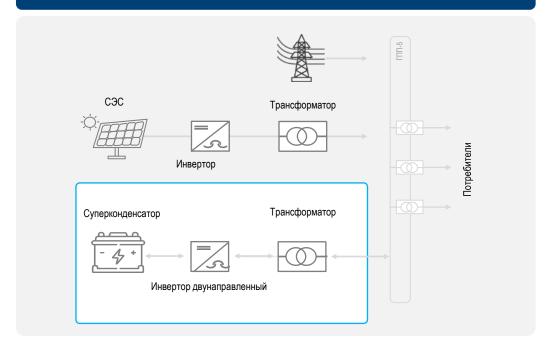

- 40 % всех событий составляют провалы глубиной до 40% от номинального напряжения и длительностью 0,1-0.5 секунд
- 25% событий имеет глубину от 40 до 70% и длительность от 1 до 5 секунд.
- Остальные 20% событий приходятся на глубину до 70% продолжительностью не более 1 с.


ТЕХНИЧЕСКОЕ РЕШЕНИЕ

ВАРИАНТЫ ОБОРУДОВАНИЯ



ДКИН последовательного включения

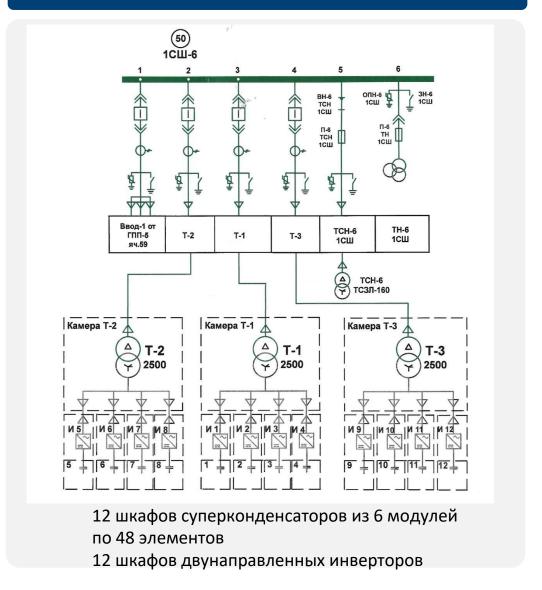


ДКИН последовательного включения

ТЕХНИЧЕСКОЕ РЕШЕНИЕ

СХЕМА ПОДКЛЮЧЕНИЯ

ОСНОВНЫЕ ПАРАМЕТРЫ


7,5 MB*A

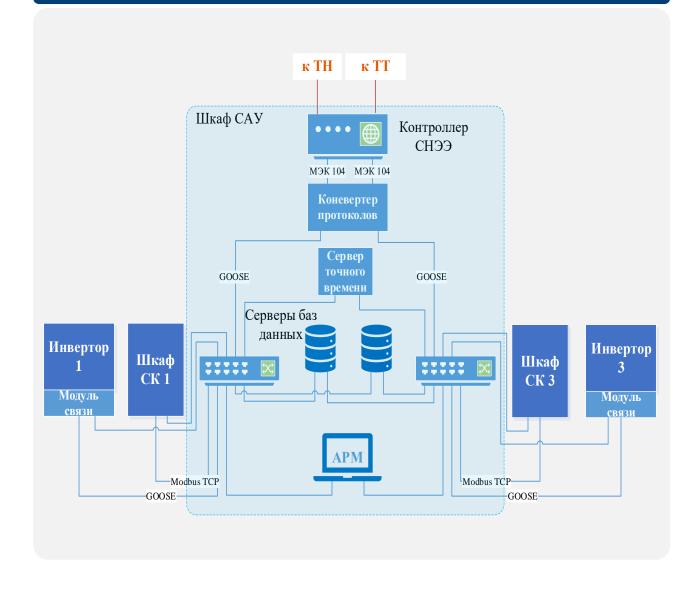
Установленная мощность суперконденсаторов 0,1 сек

Время отклика системы 2,3 сек

Длительность разряда

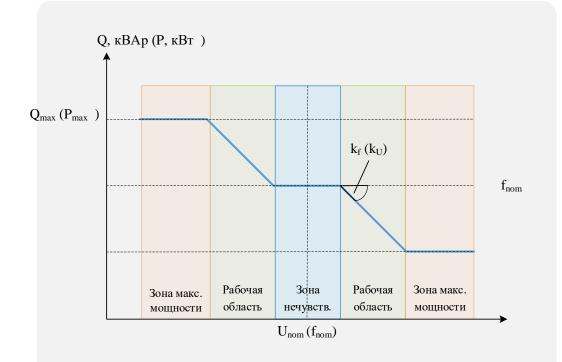
ОДНОЛИНЕЙНАЯ СХЕМА

СТРУКТУРА СИСТЕМЫ УПРАВЛЕНИЯ СНЭЭ


COCTAB

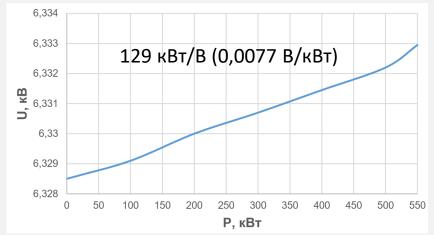
- Контроллер СНЭЭ
- Преобразователь протоколов данных
- Коммутаторы
- Серверы базы данных
- Сервер точного времени
- APM
- Модуль связи (коммутатор) в инверторе

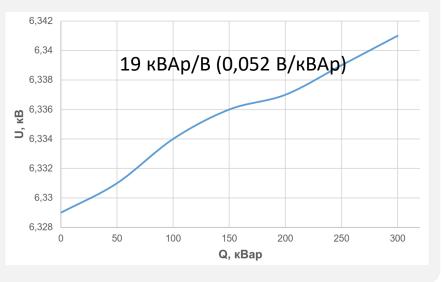
ПЕРВОНАЧАЛЬНАЯ НАСТРОЙКА


- Исходное быстродействие 1200 мс
- Использование преобразований протоколов передачи данных
- Неоптимальные настройки регуляторов тока

ЛОКАЛЬНАЯ ВЫЧИСЛИТЕЛЬНАЯ СЕТЬ

ПРИНЦИП ДЕЙСТВИЯ РЕГУЛЯТОРА МОЩНОСТИ


COCTAB



- Пропорциональное регулирование
- Наличие зоны нечувствительности
- Раздельное регулирование U(Q) и f(P)

ОЦЕНКА ЧУВСТВИТЕЛЬНОСТИ НАПРЯЖЕНИЯ

ПРОБЛЕМАТИКА

БАЗОВЫЙ (ЗАВОДСКОЙ, ИСХОДНЫЙ) АЛГОРИТМ РАБОТЫ СНЭЭ В АВТОМАТИЧЕСКОМ РЕЖИМЕ НЕ СООТВЕТСТВОВАЛ ПОСТАВЛЕННЫМ ЗАДАЧАМ

Работа по оптимизации

1. СНЭЭ выдавала активную мощность при уменьшении частоты сети и реактивную - при уменьшении напряжения

$$f\downarrow o P$$
 или $U\downarrow o Q$

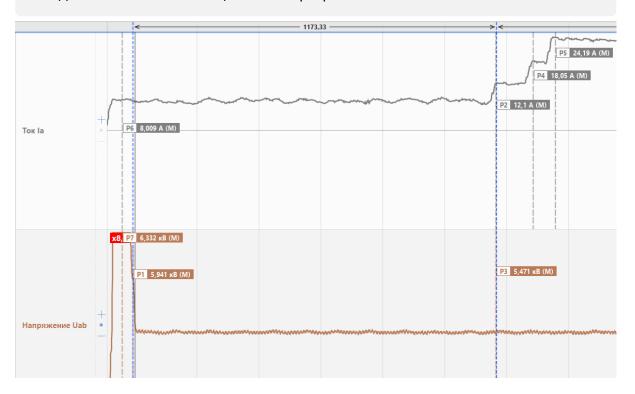
- 2. СНЭЭ инжектировала электрическую мощность ступенчато для контроля реакции сети.
- 3. «Медленные» протоколы передачи данных между элементами СНЭЭ

- 4. Отсутствие гистерезиса на отключение инжекции
- 5. Отключение инжекции мощности в сеть при уменьшении напряжения ниже 340 В согласно базовой LVRT-характеристике

1. Изменения алгоритма в пользу гибридной инжекции мощности

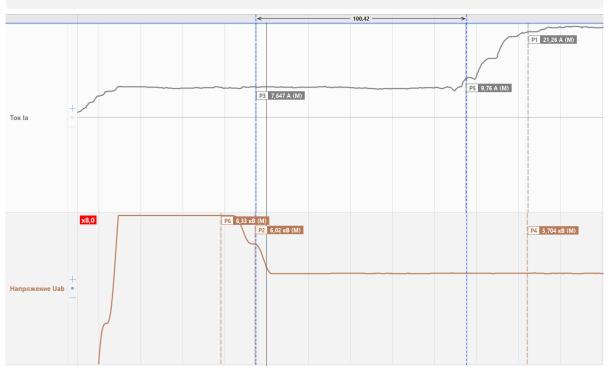
$$U \downarrow \rightarrow (P + Q)$$

- 2. Инжектирование мощности одновременно всеми инверторами
- 3. «Быстрые» протоколы передачи данных между элементами СНЭЭ (МЭК 61850 GOOSE)

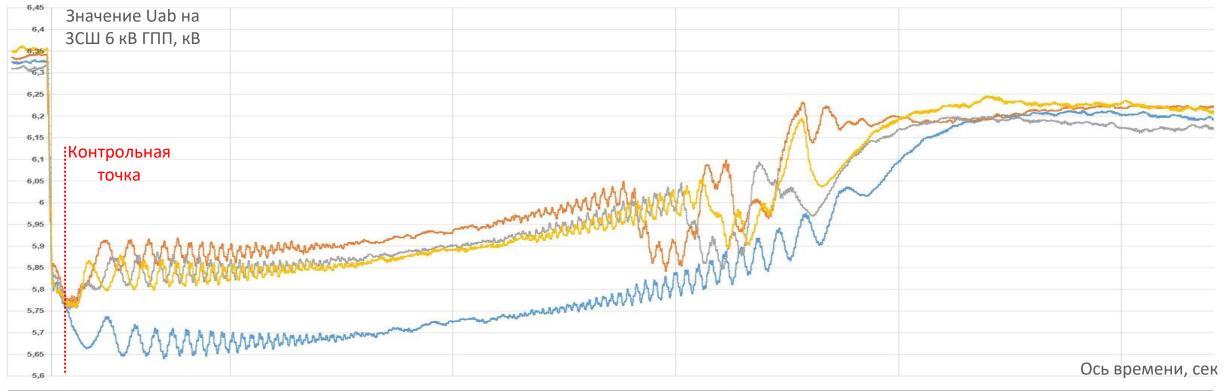


- 4. Изменение конфигурации контроллера на СНЭЭ работу с гистерезисом
- 5. Изменение LVRT-характеристики и защит по низкому напряжению инвертора

ИЗМЕНЕНИЯ СТАНДАРТНОГО АЛГОРИТМА РАБОТЫ СНЭЭ

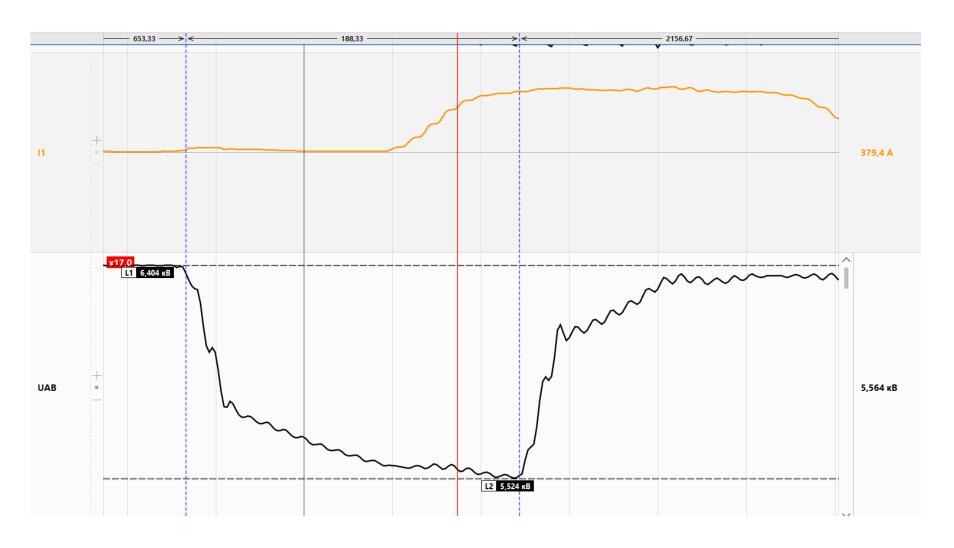

ПАРАМЕТРЫ РАБОТЫ СНЭЭ ДО ИЗМЕНЕНИЙ

- Время отклика СНЭЭ на единичное ступенчатое возмущение **1,2 сек.**
- Передача команд от системы управления СНЭЭ до инверторов с разными временными задержками
- При провалах напряжений СНЭЭ работает в режиме статического компенсатора, задействована не вся мощность инвертора



ПАРАМЕТРЫ РАБОТЫ СНЭЭ ПОСЛЕ ИЗМЕНЕНИЙ

- Время отклика СНЭЭ на единичное ступенчатое возмущение **0,1 сек.**
- Передача команд от системы управления СНЭЭ до инверторов с минимальными временными задержками
- При провалах напряжений СНЭЭ работает в режиме инжекции максимальной активной и реактивной мощности в заданной пропорции



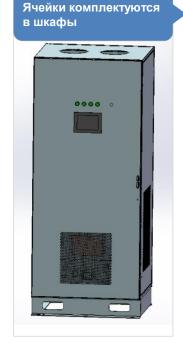
РЕЗУЛЬТАТЫ КОМПЛЕКСНЫХ ИСПЫТАНИЙ СНЭЭ ПРИ ПУСКАХ ТК-3

№ опыт а	Вид инжекции мощности	Остаточное напряжение Uab в момент инжекции мощности, кВ	Длительность провала U на 3СШ 6 кВ ГПП-5, сек	Прирост напряжения при инжекции мощности ΔU, кВ	Уменьшение длительности провала напряжения Δt, сек
1	Без инжекции	5,644	3,520	_	_
2	Q =3,6 MBAp	5,798	2,752	0,154	0,768
3	P=3,6 МВт и Q=3,6 МВАр	5,810	2,609	0,166	0,911
4	P=6,6 МВт и Q=3,6 МВАр	5,848	2,321	0,204	1,199

РЕЗУЛЬТАТЫ КОМПЛЕКСНЫХ ИСПЫТАНИЙ СНЭЭ ПРИ ВНЕШНИХ КЗ

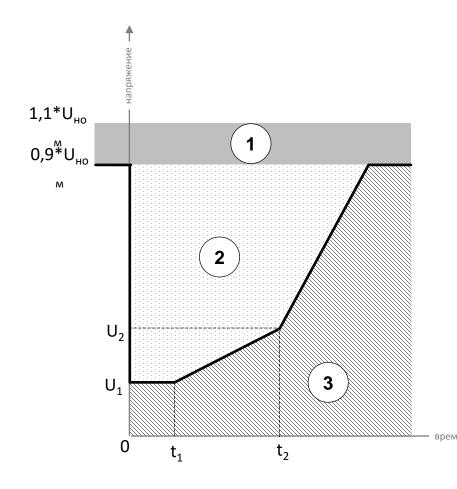
К моменту выхода СНЭЭ на номинальную мощность, кратковерменные КЗ длительностью 100-200 мс замыкание локализуется устройствами РЗА

ПРИЛОЖЕНИЯ


ДЛЯ ЦЕЛЕЙ СНЭЭ ВЫБРАН ТИП НАКОПИТЕЛЯ - СУПЕРКОНДЕНСАТОР

Суперконденсатор (СК) — накопитель энергии и источник тока, занимающий промежуточное положение между аккумуляторными батареями и традиционными конденсаторами.

Энергия сохраняется за счет поляризации заряженных частиц электролита. Суперконденсаторы являются источником импульсной, а не постоянной электрической мощности.


СРАВНЕНИЕ СУПЕРКОНДЕНСАТОРА С ЛИТИЙ-ИОННЫМ ТИПОМ НАКОПИТЕЛЯ

Параметр	Суперконденсатор	Литий-ионный аккумулятор	
Быстродейств ие	Мгновенная выдача полной мощности с момента включения	Плавная Мощность набирается постепенно и долго по сравнению с временем АВР	
Количество циклов заряда- разряда	Более 1000 000 циклов заряда- разряда	3 000-10 000 циклов заряда-разряда	
Срок службы	Более 20 лет работы	Менее 10 лет работы	
Условия эксплуатации	Суперконденсаторы значительно надежнее переносят работу в условиях частого заряда-разряда		
Емкость (время работы на разряд)	До 10 сек	От 0,5 часа и выше	
Сфера применения-	Повышение надежности энергоснабжения	Оптимизации графика потребления, интеграции ВИЭ и пр.	
Удельный вес на ёмкость	Средний.Не важно для промышленного использования	Низкий. Важно для электромобилей	

СНЭЭ комплектуется двунаправленными инверторами, КРУ-6 кВ, трансформаторами

LVRT-ХАРАКТЕРИСТИКА РАБОТЫ ИНВЕРТОРОВ

LVRT (Low Voltage Ride Through) - это способность инвертора отслеживать снижение напряжения и в зависимости от продолжительности снижения напряжения отключать или продолжать выдачу энергии в сеть.

<u>Область 1</u> - Источник энергии остаётся подключенным к электрической сети и работает в нормальном режиме.

<u>Область 2</u> - Источник энергии остаётся подключенным к электрической сети и поддерживает напряжение посредством выработки реактивной мощности.

<u>Область 3</u> - Источник энергии отключается от сети. Значительное снижение напряжения ведет к увеличению тока через электронные ключи, что может привести к их перегоранию. Для защиты от таких режимов выдача тока в области 3 не допустима.

Примечание: область 1 и 2 объединены. В нормальном режиме система находится в режиме ожидания и постоянной подзарядки суперконденсаторов, в сеть энергия не выдается. При просадке напряжения СНЭЭ начинает выдавать в сеть электрическую мощность в определенной пропорции между активной и реактивной мощности