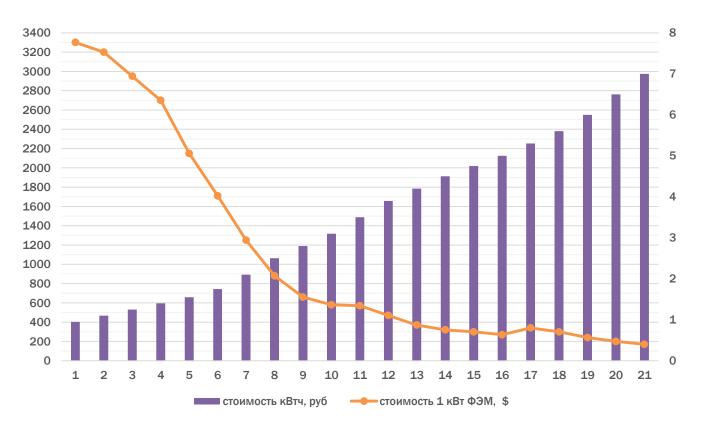
Школа молодых ученых –2025 «Системные исследования энергетических технологий» г. Москва, 25 – 26 ноября 2025 г.

ПОСТРОЕНИЕ КОММУНАЛЬНО-БЫТОВЫХ МИКРОСЕТЕЙ НА БАЗЕ НАЦИОНАЛЬНЫХ РАСПРЕДЕЛИТЕЛЬНЫХ СЕТЕЙ НИЗКОГО НАПРЯЖЕНИЯ

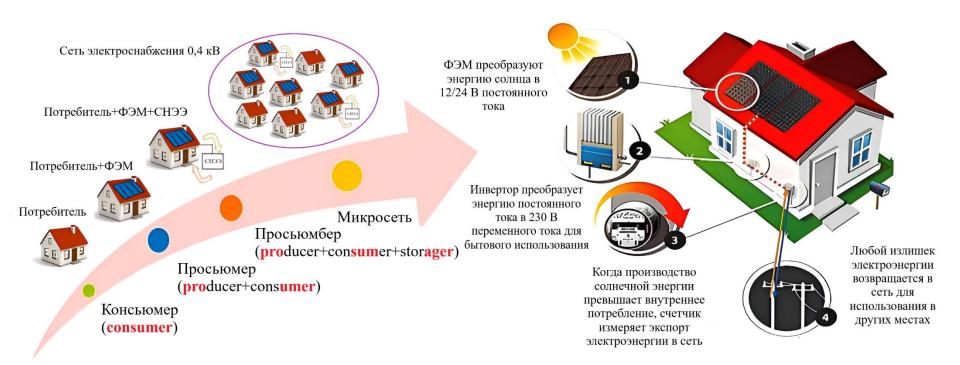
Докладчик: аспирант ИНЭИ РАН Вольный Владислав Станиславович


Научный руководитель: д.т.н., Илюшин Павел Владимирович

г. Москва, 2025

Существующее положение, цель исследования

- Систематическое повышение тарифов на электроэнергию, значительное удорожание стоимости подключения к централизованному электроснабжению, с увеличением роста электропотребления способствуют развития собственной микрогенерации, использующей технологии распределенных энергоресурсов (РЭР):распределенных источников энергии (РИЭ)+ управление нагрузкой
- Рост РИЭ в распределительных сетях низкого напряжения (НН) позволяет применить концепцию микросетей объединение географически близких РЭР распределенной сети НН, связанных единым подходом к построению системы автоматического управления (САУ)
- Ключевой особенностью микросети является возможность работы как параллельно с энергосистемой сетевой режим, так и изолированно от энергосистемы островной режим
- Переход микросети из сетевого режима в островной режим и наоборот обеспечивается САУ микросети, которая отличается подходами к своей реализации
- Национальные НТД ограничивают использование топливных РИЭ у бытовых абонентов, поэтому тиражирование микросетей переменного тока на территории РФ будет осуществлено РИЭ на основе ВИЭ, которые интегрируются в распределительную сеть преимущественно через силовые электронные преобразователи (СЭП)


Цель исследования – определение оптимального размера микросети в зависимости от типов нагрузок !!!

U.S. Solar Photovoltaic System and Energy Storage Cost Benchmarks, With Minimum Sustainable Price Analysis: Q1 2024

Сохраняющейся тенденция к росту тарифов и снижению стоимости ВИЭ повышает спрос на микрогенерацю

Зарубежный подход к построению microgrids

Mohd Fahmi Abdullah et al., International Journal of Emerging Trends in Engineering Research, 8(7), July 2020, 3095 - 3103

В зарубежной практике микросети, как правило, реализуются на полном использовании технологий РЭР:

ГУ на базе ВИЭ+ СНЭЭ+ управляемая нагрузка

Отличия международного опыта по использованию технологии *microgrids* от национальных микросетей

Основные компоненты микросети

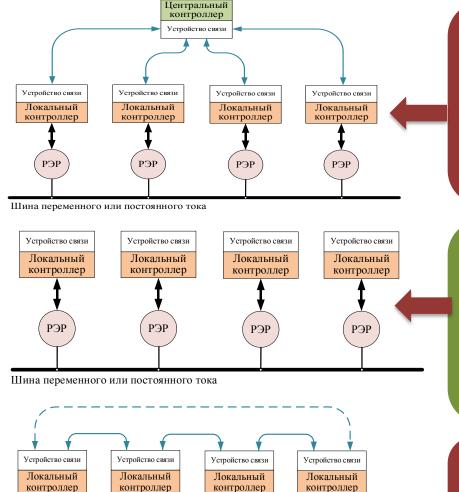
Микросеть

Кибербезопасность

Стандарты

- Процессы разработки стандартов
- Законодательная и регуляторная политика микросетей

Назначение


- Рынок электроэнергии
 - Заявки энергокомпании
 - Взаимодействие с потребителями
 - Датчики и измерения
 - Интеграция ВИЭ
 - Накопление электроэнергии
 - Электротранспорт
 - Эффективность и надежность
 - Управление спросом
 - Энергосистема
 - Информационнокоммуникационные технологии

Управление распределением

Архитектура системы

Отсутствиие стандартов не позволяет регламентировать технические условия для расширения функциональных возможностей микросетй!!!

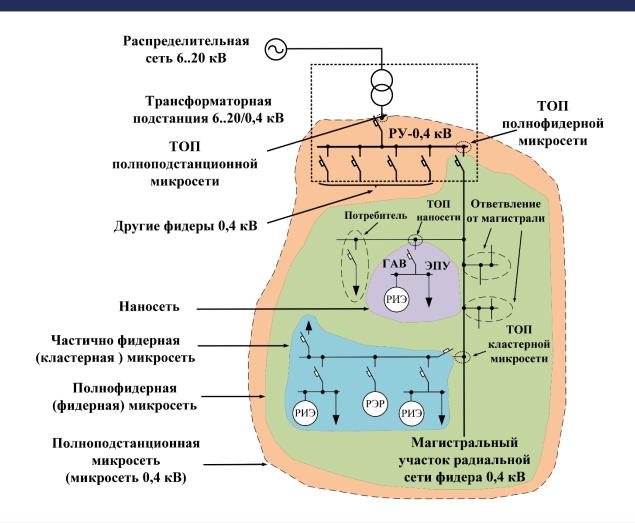
Архитектуры САУ микросети

РЭР

РЭР

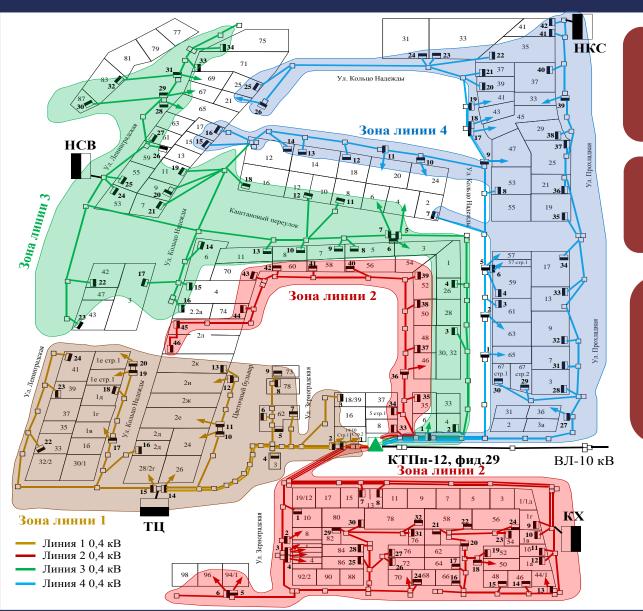
РЭР

РЭР


Шина переменного или постоянного тока

1.Централизованная: целесообразна для малых микросетей (≤ 15 РЭР и ≤ 5 МВт), где критичны плавные между режима микросети (сетевой и островной)

2.Децентрализованная: оптимальна для средних микросетей (≤ 50 РЭР и ≤ 20 МВт) с высокими требованиями к живучести, в которых некритично время перехода в сетевой режим микросети


3.Распределенная: перспективна для крупных и сложных микросистем (≤ 100 РЭР и ≤ 50 МВт), требующих адаптивности и отказоустойчиовсти

Классификация микросетей по размерности

Классификация определяет границы управления и Точки Общего Присоединения (ТОП)

Сеть электроснабжения квартала В-25 г. Волгодонск

Бытовая нагрузка (от 2 кВт до 4 кВт): смешанная (соѕф = 0,8 о.е.)

Коммунальная нагрузка (от 2 кВт до 7,5 кВт): на 100% двигательная

Коммерческая нагрузка (от 50 кВт до 100 кВт): двигательная (от 80% общего потребления)

1. Проблемы:

- Высокие пусковые токи: коммунальные нагрузки (водоснабжение, канализация, очистные сооружения) это двигатели мощностью 2-7.5 кВт. Их пусковые токи в 6-8 раз превышают номинальные, создавая критические нагрузки на инверторы.
- Снижение эффективности: для компенсации реактивной мощности инверторы вынуждены работать с пониженным коэффициентом мощности (соѕф < 1.0), что однако позволяет инверторам сохранить высокий КПД и их выходную активную мощность!!!.
- 2. Невозможность отключения: исключение коммунальных нагрузок из микросети недопустимо!!!, так как это создает прямую угрозу населению (нарушение санитарно-гигиенических норм, деградация противопожарной инфраструктуры)
- 3. Решение: технически и экономически обоснованным решением является оснащение двигателей частотно-регулируемыми приводами (ЧРП), которые устраняют проблему высоких пусковых токов

Системные ограничения при интеграции коммерческих нагрузок

- 1.Ограниченная мощность резерва: коммерческие потребители используют резервные источники только для критически важного оборудования, что ограничивает их мощность.
- 2.Высокая мощность и проблемы с реактивной энергией: большая мощность потребления создает системные ограничения. Основная проблема необходимость компенсации реактивной мощности для двигателей. Это приводит к перегрузке инверторов или снижению их эффективности использования активной мощности ВИЭ.
- 3.Динамические нагрузки и нестабильность частоты: включение/отключение мощных двигателей вызывает резкие колебания частоты, что требует от инверторов широкого диапазона регулирования и может приводить к их аварийным отключениям.
- 4.Высокая стоимость решений: использование СНЭЭ решает проблему, но значительно увеличивает капитальные затраты, ухудшая экономику проекта.
- 5. Частичная эффективность существующих мер: ЧРП решает проблему пусковых токов, но не устраняют системные проблемы с реактивной мощностью и динамической неустойчивостью!!!
- 6.Удаленность и потери: Электрическая удаленность потребителей от генерации увеличивает потери при передаче.

Выводы и перспективы

- 1.Технологический фундамент: национальные микросети целесообразно реализовывать исключительно на основе ВИЭ с применением ведущих инверторов, формирующих опорную сеть.
- 2. Архитектура управления: Архитектура САУ определяется размером микросети и состоянием ИКИ. Использование существующей инфраструктуры позволяет реализовать только децентрализованную САУ.
- 3. Классификация и стандартизация: Определена классификация по размерности (наносеть, кластерная, фидерная, полноподстанционная). На ее основе можно сформировать технические требования к просьюмерам для реализации микросетей различного назначения.

4.Работа с нагрузками:

- Коммунальные нагрузки: Интеграция обязательна (требуются устройства частотного пуска). Исключение недопустимо по соображениям безопасности.
- Коммерческие нагрузки: Интеграция в существующие микросети на ВИЭ сопряжена с критическим снижением эффективности и надежности. Требуются принципиально иные архитектурные решения!!!.
- 5.Перспективное направление: Для интеграции коммерческих нагрузок с двигателями перспективно создание гибридных микросетей переменного/постоянного тока, что обеспечивает эффективную компенсацию реактивной мощности и изоляция динамических возмущений через подключение к шине постоянного тока.

БЛАГОДАРЮ ЗА ВНИМАНИЕ!

Вольный Владислав Станиславович volnyyvs@yandex.ru