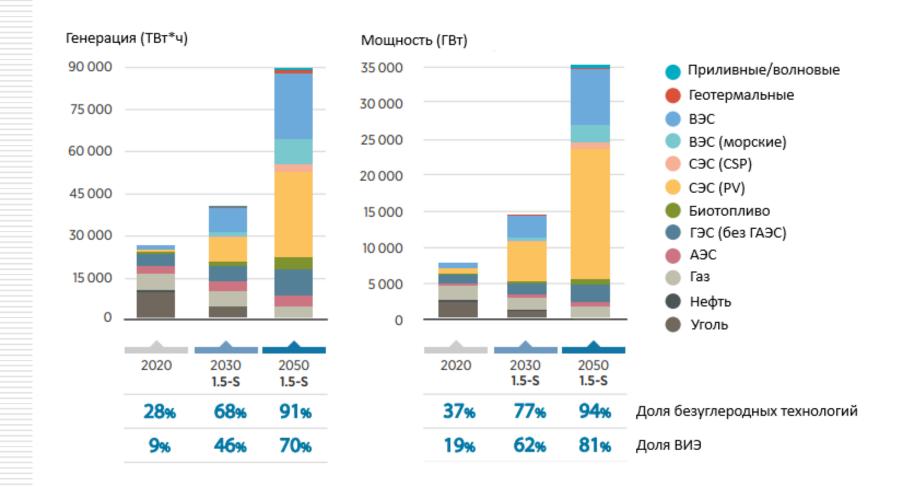
Экономическая оценка системных эффектов при изменении структуры мощностей

Аликин Р.О., Городилов М.А., Люшнин Л.С.


Институт энергетических исследований РАН

Ноябрь, 2025

Структура мировой электроэнергетики по сценарию 1.5°C

Источник: International Renewable Energy Agency (IRENA) World Energy Transitions Outlook: 1.5°

Цель и задачи исследования

Цель:

 Разработать и апробировать подход к экономической оценке системных эффектов (СЭ)

Задачи:

- Сформировать классификацию СЭ и их экономических последствий.
- Определить модельный инструментарий и область применимости.
- Разработать методику экономической оценки СЭ
- Провести апробацию на сценариях развития ЕЭС России

ин Эй

Системные эффекты: определение и классификация

Системные эффекты - реакция энергосистемы на изменение условий функционирования и развития при интеграции новых технологий на стороне генерации и спроса.

Системные эффекты можно классифицировать:

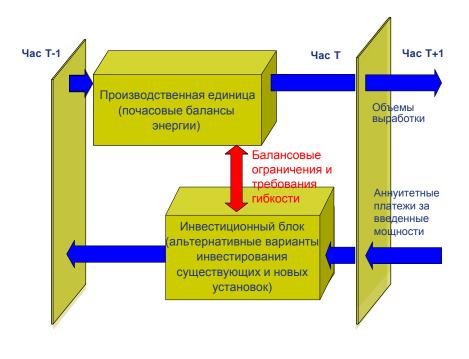
- По источнику: ВИЭ; СНЭЭ (системы накопления); электрификация транспорта/тепла; распределённая генерация и др.;
- По горизонту их проявления:
 - Операционные (краткосрочные): режимы работы (КИУМ), пускиостановы, небалансы (избытки/дефициты), потери;
 - Инвестиционные (долгосрочные): вводы генерирующих, аккумулирующих и сетевых мощностей;
- По экономическим последствиям:
 - эксплуатационные затраты (ОРЕХ);
 - оптовые цены электроэнергии (РСВ);
 - выручка генераторов;
 - капитальные вложения / инвестиционная нагрузка (САРЕХ)

ин Эи

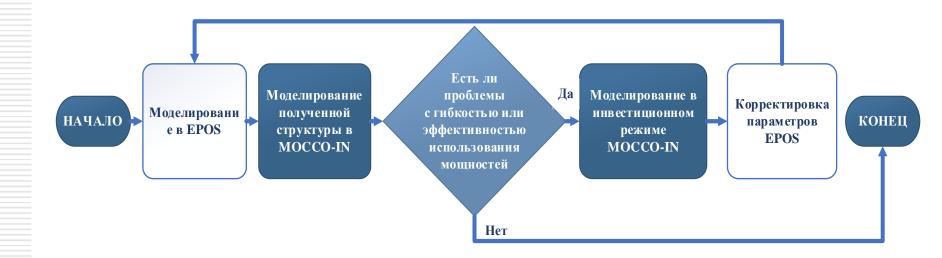
Характеристика модели EPOS

EPOS — линейная динамическая оптимизационная модель развития генерирующих мощностей и межсистемных связей в ЕЭС России

- горизонт планирования до 2050 года с (расширен до 2070 года)
- более 400 крупных существующих и планируемых электростанций
- более 50 видов новых генерирующих технологий (включая резерв)
- оптовые балансы электроэнергии по 42 узлам с перетоками по ЛЭП
- балансы централизованного теплоснабжения и розничные балансы электроэнергией по 80 регионам
- только базовая проверка запаса гибкости
- различные меры по регулированию выбросов CO2
- может быть расширен за счет охвата газового и угольного секторов



Характеристика модели MOCCO-IN


МОССО-IN — линейная динамическая оптимизационная модель, определяющая объем почасовой выработки всех моделируемых энергообъектов по критерию минимума переменных затрат в течение года

- Возможность совместного моделирования условий функционирования различных сегментов энергосистемы (генерации, потребления, межсистемных перетоков энергии и др.),
- Достаточный высокий уровень технологической и временной детализации для объективного моделирования режимов работы различных технологий энергетики и их взаимодействия,
- Достаточный горизонт моделирования (минимум в год) для того, чтобы учесть внутригодовые (сезонные, недельные, суточные и проч.) неравномерности в графиках нагрузки потребителей и возможностях изменения загрузки мощности разных типов электростанций,
- Поиск экономически оптимального решения и анализа ценовых последствий.

Схема «мягкой» интеграции моделей EPOS и MOCCO-IN

Установленная

мощность, млн

кВт после

корректировки

MOCCO-IN

668,9

76,8

69,9

1/5/1

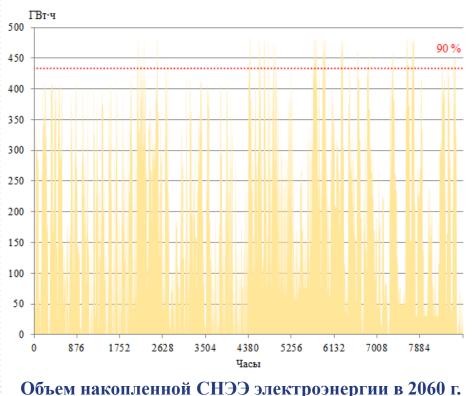
1,791

Апробация подхода к экономической оценке СЭ

В выбранном сценарии подразумеваются существенный рост электропотребления к 2060 году, усиленный электрификацией экономики (до 2400 млрд кВт·ч или на 113 % от уровня 2019 г.) и строгое углеродное регулирование (сокращение выбросов CO2 на 14 % от уровня 2019 г.) с форсированным развитием электростанций на базе ВИЭ

Тип

электростанций


ия в СНЭЭ, трлн.

pv6.

Всего, в т. ч.:

АЭС

-ЭС

CJC	145,1	145,1
ВЭС	163,6	163,6
ТЭЦ	72,3	72,3
КЭС паротурбинные	11,6	11,6
КЭС парогазовые и газотурбинные	65,8	65,8
СНЭЭ (в т. ч. ГАЭС)	84,4	63,8
Капиталовложен		

2,409

Установленная

мощность, млн кВт

до корректировки

MOCCO-IN

689,7

76,8

69,9

Выводы

- ❖Связка моделей EPOS и MOCCO-IN позволяет одновременно анализировать долгосрочное развитие и почасовое функционирование энергосистемы;
- ❖Почасовая проверка сценария развития ЕЭС России выявила избыточность отобранных мер гибкости, а итерационная корректировка сценария позволила определить минимально необходимый объем СНЭЭ, снизив капитальные вложения при сохранении режимной реализуемости;
- ❖Предложенный подход позволяет сопоставлять альтернативные меры компенсации СЭ и формировать более сбалансированные, экономически обоснованные сценарии развития ЕЭС России.

Институт энергетических исследований РАН

www.eriras.ru info@eriras.ru ruslanalikin@bk.ru

