

ПРИМЕНЕНИЕ КОМБИНИРОВАННОГО НЕЧЕТКОГО РЕГУЛЯТОРА В СИСТЕМЕ УПРАВЛЕНИЯ СИЛОВЫМ ИНВЕРТОРНЫМ ПРЕОБРАЗОВАТЕЛЕМ

Докладчик: Радько Павел Павлович

Аспирант отделения электроэнергетики и электротехники, Инженерная школа энергетики

Национальный исследовательский Томский политехнический университет

Всероссийская школа молодых ученых «Системные исследования энергетических технологий»

АКТУАЛЬНОСТЬ И ПРОБЛЕМАТИКА

Структура установленной мощности электростанций ЭЭС России

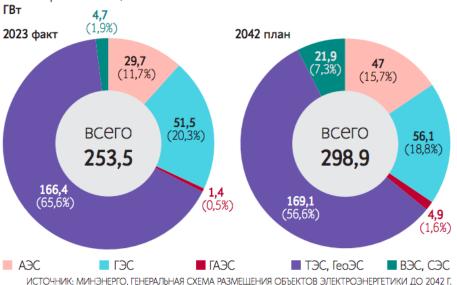
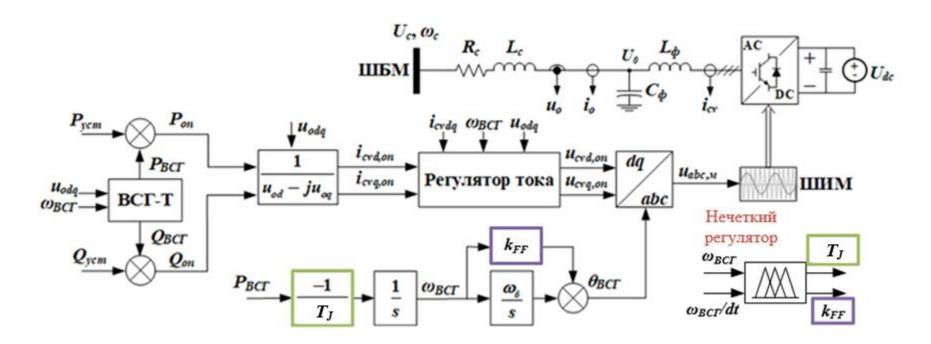


Рис. 1 – Структура генерирующих мощностей России, ГВт

Актуальные проблемы

Отсутствие вовлеченности ВИЭ в регулирование режимных параметров

Снижение общесистемной постоянной инерции


Недостаточная адаптивность современной усложненной системы автоматического управления

Предлагаемое решение

Для повышения адаптивности системы автоматического управления, позволяющей регулировать режимные параметры, предлагается использовать регуляторы на основе нечёткой логики



ИССЛЕДУЕМАЯ СХЕМА

Комбинированный нечеткий регулятор изменяет значение постоянной инерции T_J и коэффициента демпфирования k_{FF}

Рис. 2 – Структура системы управления инвертором

ПРИНЦИП ДЕЙСТВИЯ НЕЧЕТКИХ РЕГУЛЯТОРОВ

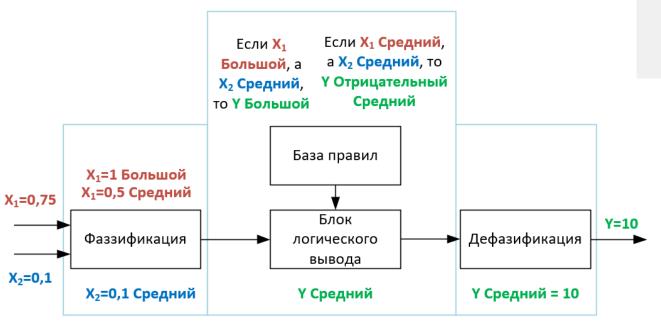


Рис. 3 – Пример работы нечеткого регулятора

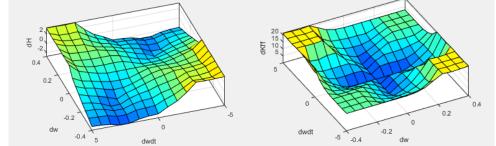


Рис. 4 – Поверхности вывода нечеткого регулятора

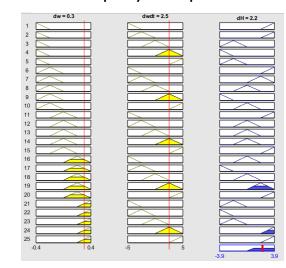


Рис. 5 – Таблица правил нечеткого регулятора при формировании выходного сигнала

РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТОВ

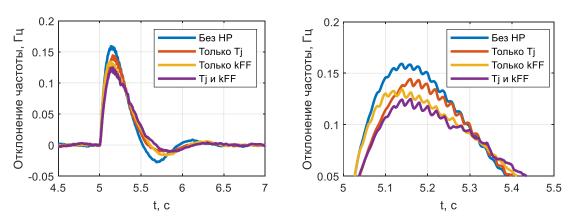


Рис. 6 – Отклонения частоты при изменении уставки активной мощности 0,3→0,9 о.е.

Рис. 7 – Изменение активной мощности при изменении уставки активной мощности 0,3→0,9 o.e.

Таблица 1 – Анализ результатов экспериментов

	Без НР	Тյ	k _{FF}	Комб. НР
Максимальное отклонение частоты dω				
Значение, Гц	0,1591	0,1443	0,1342	0,125
Улучшение относительно случая без HP, %		9,3	15,6	21,5
Интегральный показатель качества ISTSE				
Значение, о.е.	0,0746	0,0598	0,0587	0,0511
Улучшение относительно случая без HP, %		19,8	21,4	31,6

$$ISTSE = \int_{t=0}^{T=t_{saio}} t^2 \cdot e^2(t) dt$$

ЗАКЛЮЧЕНИЕ

- Обеспечить вовлечение возобновляемых источников энергии в процесс регулирования режимных параметров можно с помощью современных систем управления силовыми инверторами, однако усложнение систем управления влечет за собой уменьшение адаптивности;
- Регуляторы на базе нечеткой логики способны в темпе процесса изменять значения величин, которые при традиционном подходе остаются неизменными: постоянная инерции и коэффициент демпфирования;
- Эксперименты показали, что использование комбинированного нечеткого регулятора позволяет сократить предельное отклонение частоты и степень перерегулирования, на 21,5% и 31,6% соответственно.

СПАСИБО ЗА ВНИМАНИЕ

ПРИМЕНЕНИЕ КОМБИНИРОВАННОГО НЕЧЕТКОГО РЕГУЛЯТОРА В СИСТЕМЕ УПРАВЛЕНИЯ СИЛОВЫМ ИНВЕРТОРНЫМ ПРЕОБРАЗОВАТЕЛЕМ


Исследование выполнено за счет гранта Российского научного фонда № 24-29-00004

Докладчик: Радько Павел Павлович ppr1@tpu.ru

Аспирант отделения электроэнергетики и электротехники, Инженерная школа энергетики

Национальный исследовательский Томский политехнический университет

Всероссийская школа молодых ученых «Системные исследования энергетических технологий»

приложение 1

РЕЗУЛЬТАТЫ ДРУГИХ ЭКСПЕРИМЕНТОВ

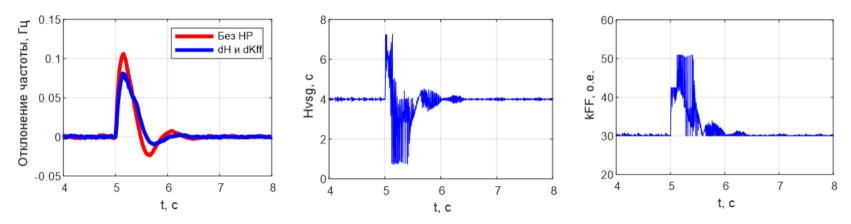


Рис. 8 – Осциллограммы частоты, T_J (H_{vsg}) и k_{FF} при изменении уставки по мощности 0,2ightarrow0,6 о.е.

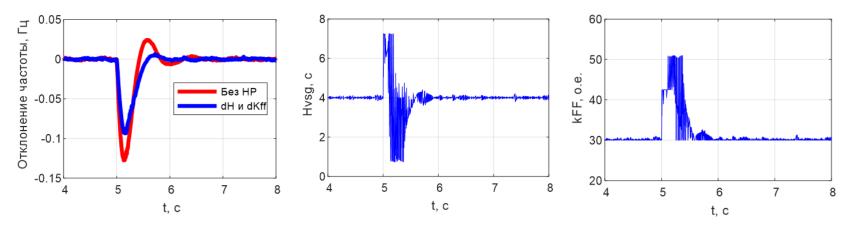


Рис. 9 – Осциллограммы частоты, $T_{J}\left(H_{vsq}\right)$ и k_{FF} при увеличении нагрузки на 0,4 о.е.