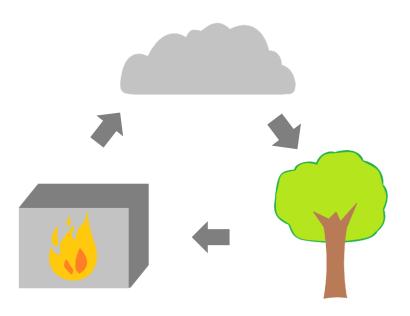
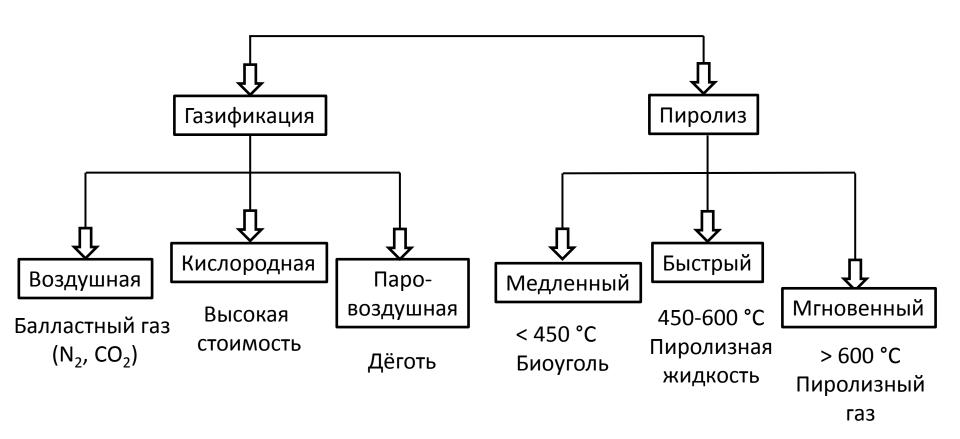
Всероссийская школа молодых учёных "Системные исследования энергетических технологий" 25 – 26 ноября 2025 г.

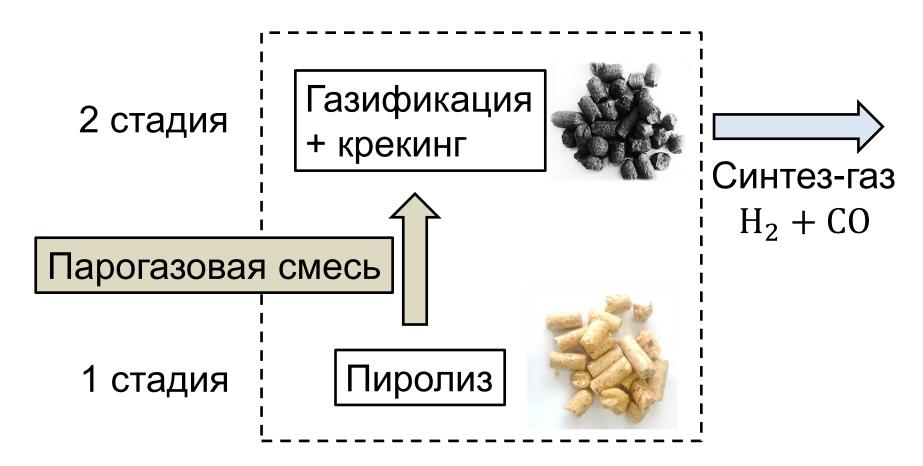
ПОЛУЧЕНИЕ СИНТЕЗ-ГАЗА ИЗ БИОМАССЫ МЕТОДОМ ДВУХСТАДИЙНОГО ПИРОЛИЗА ПОД ДАВЛЕНИЕМ

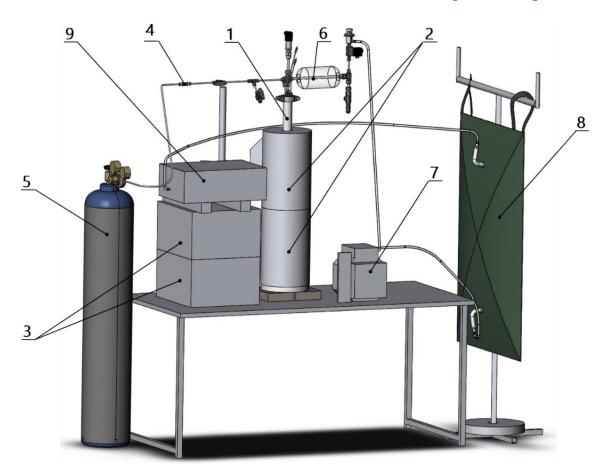

В.А. Лавренов, Ю.М. Фалеева

Федеральное государственное бюджетное учреждение науки Объединённый институт высоких температур РАН Лаборатория 12 Распределённой генерации

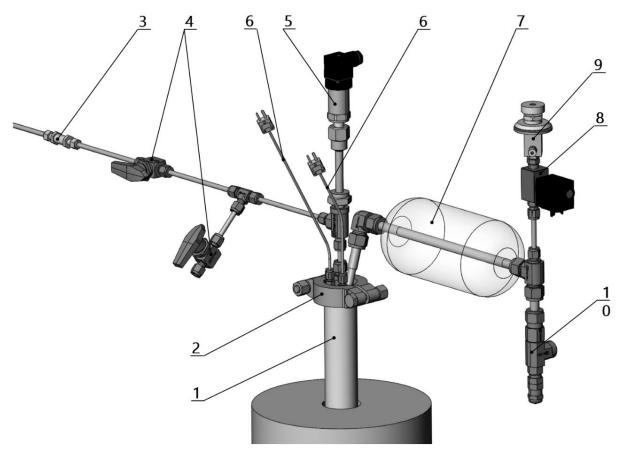
Использование растительной биомассы


СО₂-нейтральность

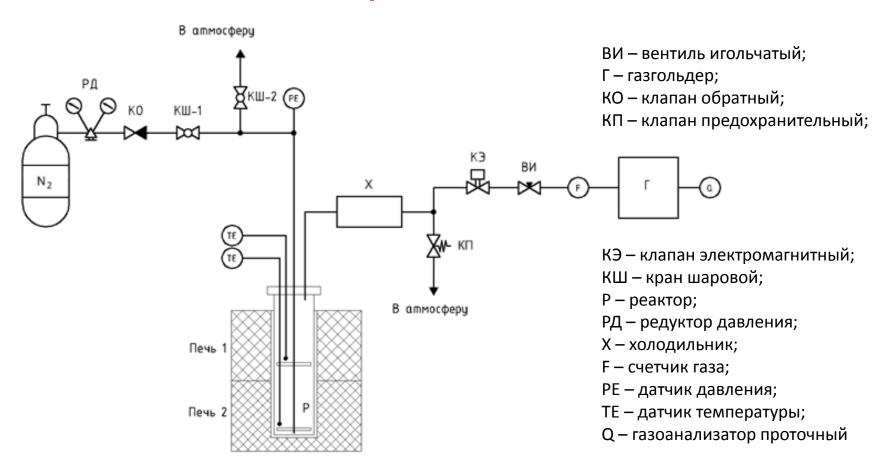

Широкая доступность + утилизация отходов


Термохимическая конверсия биомассы

Двухстадийный пиролиз



Общий вид лабораторного стенда


- 1 реактор;
- 2 электрические печи;
- 3 контроллеры электропечей;
- 4 линия подвода газа;
- 5 баллон со сжатым газом;
- 6 линия отвода и охлаждения газа;
- 7 счетчик газа;
- 8 газгольдер;
- 9 газоанализатор проточный

Основной узел лабораторного стенда

- 1 реактор;
- 2 хомут фланцевого
- соединения;
- обратный клапан;
- 4 шаровые краны;
- 5 датчик давления;
- 6 термопары;
- 7 холодильник;
- 8 электромагнитный клапан;
- 9 игольчатый кран;
- 10 предохранительный клапан

Схема экспериментального стенда

Характеристика синтез-газа

Ед. изм	Величина избыточного давления, бар		
	0	40	
Компонентный состав синтез-газа:			
% об.	47.79	42.54	
% об.	46.30	44.84	
% об.	1.93	7.60	
% об.	3.14	4.10	
% об.			
% об.			
% об.	96.25	95.26	
-	1.032	0.949	
МДж/м³	11.2	12.2	
г/м ³	0.78		
г/м ³	1.96	51.8	
м ³ /кг	1.282	1.111	
% мас.	25.15	32.54	
	% об. % об МДж/м³ г/м³ г/м³ м³/кг	% об. 47.79 % об. 46.30 % об. 1.93 % об. 3.14 % об. % об. % об. 96.25 - 1.032 МДж/м³ 11.2 г/м³ 0.78 г/м³ 1.96 м³/кг 1.282	

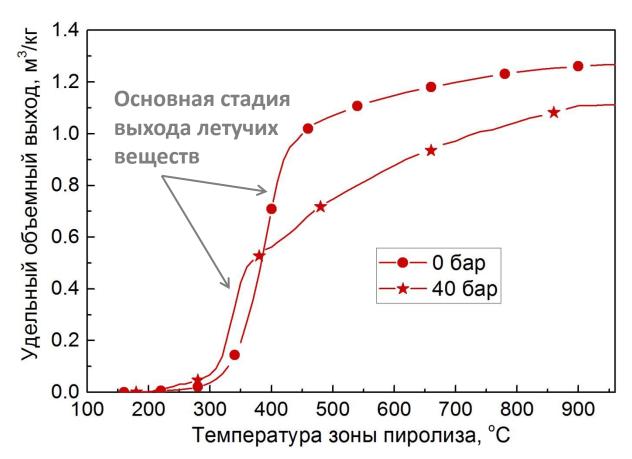
Реакция конверсии водяного газа: $CO + H_2O = H_2 + CO$

Реакция паровой газификации:

$$C + H_2O = CO + H_2$$

Реакция парового риформинга:

$$C_n H_m + nH_2 O = nCO + (\frac{m}{2} + n)H_2$$



Согласно принципу Ле Шателье увеличение давления смещает химическое равновесие реакции в сторону образования продуктов с меньшим числом газообразных молекул

Соотношение массовых долей углеводородных компонентов синтез-газа

Массовая доля углеводородного	Величина избыточного давления, бар	
компонента, %	0	40
Метан	56.784	95.690
Этан	0.031	0.185
Этилен	0.206	0.020
Пропан	0.071	0.347
Пропен	0.370	0.017
Изобутан	0.020	0.166
Бутан	0.061	0.518
t-бутен-2	4.988	0.039
1-бутен	6.425	0.499
Изобутилен	3.122	0.079
с-бутен-2		0.917
Изопентан	19.421	1.449
Пентан	8.502	0.073

Удельный объёмный выход синтез-газа

В работе [1] было установлено, что с увеличением давления выход летучих веществ при пиролизе угля ускоряется и смещается в сторону низких температур.

[1] Zhu, Y., Wang, Q., Yan, J., Cen, J., Fang, M., & Ye, C. (2022). Influence and action mechanism of pressure on pyrolysis process of a low rank Naomaohu coal at different temperatures. Journal of Analytical and Applied Pyrolysis, 167, 105682.

Выводы

Проведенные исследования позволили получить экспериментальные данные о количественных характеристиках процесса двухстадийного пиролиза биомассы под давлением: удельный выход синтез-газа и твёрдого остатка, компонентный состав и теплоту сгорания синтез-газа, содержание влаги и смол в синтез-газе.

Осуществление переработки под давлением позволит увеличить эффективность процесса за счёт снижения или полного исключения энергозатрат на компримирование синтез-газа перед подачей в блок синтеза жидких продуктов. Полученные результаты подтверждают перспективность широкого применения метода и его потенциально высокую эффективность.

Спасибо за внимание!

Работа выполнена при поддержке Министерства науки и высшего образования Российской Федерации (Государственное задание № 075-00269-25-00).