

## УСТОЙЧИВЫЙ МЕТОД ОДНОСТОРОННЕГО ОПРЕДЕЛНИЯ МЕСТА ПОВРЕЖДЕНИЯ ПО ПАРАМЕТРАМ АВАРИЙНОГО РЕЖИМА ДЛЯ ВОЗДУШНЫХ ЛИНИЙ С ЗАЗЕМЛЕННЫМ ГРОЗОТРОСОМ

Чернеев Павел Павлович, НГТУ им. Р. Е. Алексеева, г. Нижний Новгород

Куликов Александр Леонидович, НГТУ им. Р. Е. Алексеева,

г. Нижний Новгород

Федосов Денис Сергеевич, ИРНИТУ,

г. Иркутск



#### Введение

- 1. Применение оптического кабеля, встроенного в грозозащитный трос (ОКГТ), требует заземления грозотроса на каждой опоре.
- При заземлении грозотроса путь протекания ТОКОВ нулевой последовательности проходит по фазным проводам, земле нейтраль трансформатора. заземленному грозотросу в Сопротивление дополнительную ВНОСИТ реактивную составляющую в сопротивление повреждения.
- 3. Существующие алгоритмы одностороннего ОМП по параметрам аварийного режима реализованы с учетом некоторых допущений о параметрах линии, сети и повреждения.




#### Устойчивость алгоритмов определения места повреждения

| Конструктивные                                                                                         | Климатические                                                                                                          | Параметры сети                                                                                             | Параметры                                                                                                                          |  |
|--------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|--|
| параметры                                                                                              | параметры                                                                                                              |                                                                                                            | замыкания                                                                                                                          |  |
| <ul> <li>Способ заземления ГТ;</li> <li>Удельные параметры ГТ;</li> <li>Высота подвески ГТ.</li> </ul> | Сопротивление ЗУ опоры, которое характеризуется: - Климатическими характеристики района; - Реальными погодные условия. | - Сдвиг в углах<br>ЭДС питающих<br>энергосистем;<br>- Сопротивление<br>системы<br>удаленного конца<br>ЛЭП. | Переходное сопротивление в месте замыкания, включающее в себя: - Сопротивление дуги, - Сопротивление ЗУ опоры, - Сопротивление ГТ. |  |

### Определение места повреждения на ЛЭП с заземленным грозозащитным тросом

#### Полное сопротивление повреждения:

$$\boldsymbol{Z}_{\Pi} = \boldsymbol{Z}_{\mathrm{C}} + \boldsymbol{Z}_{\mathrm{3Y.C}} + \boldsymbol{Z}_{\mathrm{J}} + \boldsymbol{R}_{\mathrm{J}} + \boldsymbol{Z}_{\mathrm{3Y}} + \boldsymbol{Z}_{\mathrm{TT}}$$



Эквивалентная схема замещения ВЛ с заземленным грозозащитным тросом



#### Модифицированный алгоритм одностороннего метода ОМП

Замер сопротивления в месте установки устройства ОМП:

$$\underline{Z'} = \frac{\dot{U'}}{\dot{I'}} = \underline{Z}_{1\text{уд.}\pi} \cdot L_K + \frac{\dot{I}_K}{\dot{I'}} \cdot R_{\pi}$$
 (1),

Ошибка замера сопротивления:

$$\Delta \underline{Z'} = \frac{\dot{I}_K}{\dot{I'}} \cdot R_{\Pi} \quad (2),$$

Удельная ошибка замера сопротивления:

$$\Delta \underline{Z}'_{yA} = \frac{\dot{I}_K}{\dot{I}'} \quad (3)$$

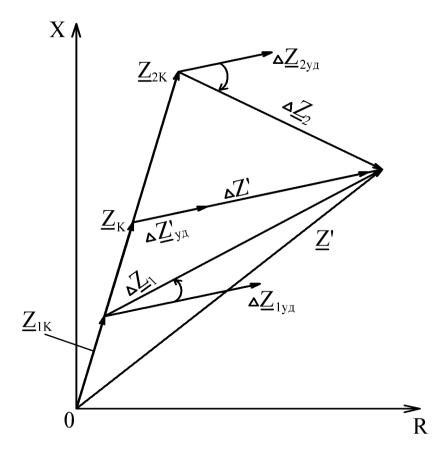
Ток в месте повреждения и коэффициент токораспределения:

$$\dot{I}_{\#K} = \dot{I'}_{\#} \cdot \underline{K}_{\text{TOK}\#}, \quad \underline{K}_{\text{TOK}\#} = \frac{Z''_{\#c}}{Z'_{\#c} + \underline{Z}_{\#\pi} + Z''_{\#c}}$$
 (4).

 $\dot{U}', \dot{I}'$  — напряжение и ток в месте установки устройства ОМП;

 $\underline{Z}_{1 y д.л} -$ удельное сопротивление лини;

 $L_K$  — расстояние до места повреждения;


 $I_K$  — ток в месте повреждения;

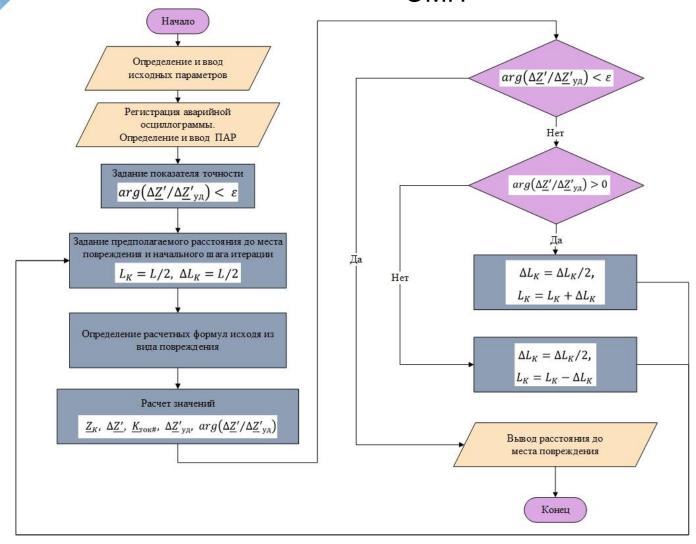
 $R_{\rm II}$  — переходное сопротивление в месте повреждения.

# - индекс последовательности.

# нижего техниче им. Р. Е.

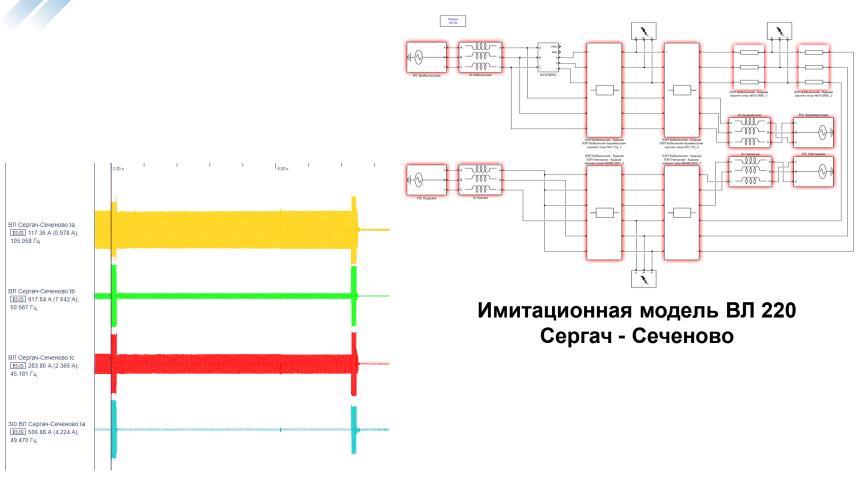
#### Модифицированный алгоритм одностороннего метода ОМП




Соотношение векторов сопротивления для пояснения модифицированного алгоритма



#### Модифицированный алгоритм одностороннего метода ОМП


| Вид повреждения        | $\Delta \underline{Z'}$                                                                                                                 | $\Delta \underline{oldsymbol{Z}}'_{ m уд}$                                                                            |  |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--|
| Однофазное КЗ          | $\frac{3 \cdot \dot{I'}_0 \cdot R_{\Pi}}{\left(\dot{I'} + \underline{K} \cdot \dot{I'}_0\right) \cdot \underline{K}_{\text{TOK}0}}$     | $\frac{3 \cdot \dot{I'}_0}{\left(\dot{I'} + \underline{K} \cdot \dot{I'}_0\right) \cdot \underline{K}_{\text{TOK}0}}$ |  |
| Двухфазное КЗ          | $\frac{\left(\dot{I'}_{2B}-\dot{I'}_{2C}\right)\cdot R_{\Pi}}{\left(\dot{I'}_{B}-\dot{I'}_{C}\right)\cdot \underline{K}_{\text{TOK2}}}$ | $\frac{\dot{I'}_{2B} - \dot{I'}_{2C}}{\left(\dot{I'}_B - \dot{I'}_C\right) \cdot \underline{K}_{\text{TOK2}}}$        |  |
| Двухфазное КЗ на землю | $\frac{\left(\dot{I'}_{2B}-\dot{I'}_{2C}\right)\cdot R_{\Pi}}{\left(\dot{I'}_{B}-\dot{I'}_{C}\right)\cdot \underline{K}_{\text{TOK2}}}$ | $\frac{\dot{I'}_{2B} - \dot{I'}_{2C}}{\left(\dot{I'}_B - \dot{I'}_C\right) \cdot \underline{K}_{\text{TOK2}}}$        |  |

Модифицированный алгоритм одностороннего метода ОМП





#### Испытание метода на аварийных осциллограммах



Осциллограмма токов и напряжений



#### Результаты

#### Результаты ОМП

| Метод ОМП                                           | L-метр | Метод<br>Wiszniewski | Метод<br>Аржанникова | Метод<br>Висящева | Предлагаемый<br>метод |
|-----------------------------------------------------|--------|----------------------|----------------------|-------------------|-----------------------|
| Расчетное расстояние<br>до места<br>повреждения, км | 35,85  | 31,28                | 30,72                | 28,65             | 21,54                 |
| Относительная погрешность, %                        | 22,35  | 15,09                | 14,20                | 10,91             | 0,40                  |



#### Выводы

- 1. При расчете сопротивления повреждения наблюдается как активная, так и реактивная составляющая. Расчетное сопротивление повреждения, для рассмотренного повреждения, составляет: 20,9569+j2,3956 Ом.
- 2. Предлагаемый алгоритм позволяет компенсировать влияние реактивной составляющей сопротивления повреждения. Таким образом, повышая точность ОМП.
- 3. Необходима разработка специализированных метод ОМП для ЛЭП с заземленным ГТ или универсальных методов ОМП. Такой метод должен учитывать или быть устойчив к влиянию реактивной составляющей сопротивления повреждения, а также к влиянию труднопредсказуемых или случайных параметров сети.
- 4. Новый метод ОМП рекомендуется к реализации в виде программного обеспечения для устройств ОМП, а также терминалов релейной защиты и автоматики.



#### СПАСИБО ЗА ВНИМАНИЕ!