Научный Исследовательский Университет «Московский Энергетический Институт» Кафедра Атомных Электрических Станций

ИСПОЛЬЗОВАНИЕ СОВРЕМЕННЫХ ТЕХНОЛОГИЙ ДЛЯ МОДЕЛИРОВАНИЯ РАСПРЕДЕЛЕНИЯ РАДИОЛИТИЧЕСКОГО ВОДОРОДА В РЕАКТОРАХ ТИПА ВВЭР

Воробьева Светлана Юрьевна 26.11.2025

Актуальность и цели работы

- Опыт эксплуатации реакторных установок типа ВВЭР показал, что в оборудовании первого контура могут образовываться водородосодержащие парогазовые смеси.
- Главным фактором появления водорода в реакторных установках является радиолиз теплоносителя разложение химических соединений под действием ионизирующего излучения, исходящего из активной зоны реактора.
- При наличии в теплоносителе первого контура аммиака идет его разложение с образованием водорода и азота. При отсутствии в теплоносителе аммиака идет разложение воды с образованием водорода, кислорода и перекиси водорода.
- Цель расчетов реактора оценка в стояночном режиме расхода водорода с поверхности теплоносителя и определение времени образования опасной смеси в парогазовом объеме.
- Задача работы с нейронной сетью создать метамодель коэффициента массоотдачи при меняющихся граничных условиях для встраивания в CFD или одномерный код, что поможет сильно сократить временные и мощностные затраты на проведение расчетов, а также проводить уточненные оптимизационные расчеты в рамках обеспечения водородной взрывобезопасности.

Оценка массового потока через межфазную границу

• Массовый поток через межфазную границу:

$$J=\beta(Cs-Cb)$$

где β - коэффициент массоотдачи, зависящий от величины турбулентного числа Рейнольдса и числа Шмидта, Cs — концентрация насыщенного газа на межфазной границе, Cb — концентрация газа в объеме жидкости.

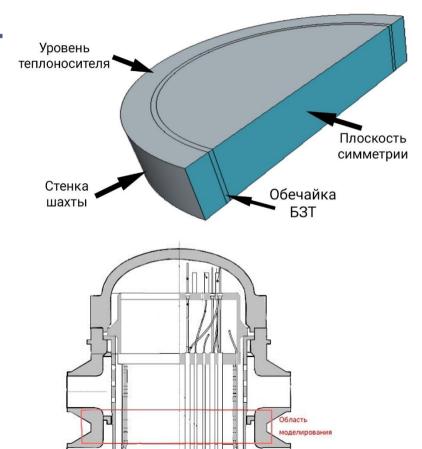
- Для турбулетного числа Рейнольдса:
 - Меньше 500:

$$\beta$$
=1.6*u/(Re*Sc)^{0.5}

Больше 500:

$$\beta$$
=0.343*u/(Re^{0.25}*Sc^{0.5})

Оценка массового потока через межфазную


границу, реактор

Модель для расчета массового потока представляет собой часть пространства реактора над активной зоной до уровня теплоносителя между входными и выходными патрубками.

Всего было создано три модели:

- Объемом 23604 элементов сетки;
- Объемом 1725376 элементов сетки;
- Объемом 3133416 элементов сетки.

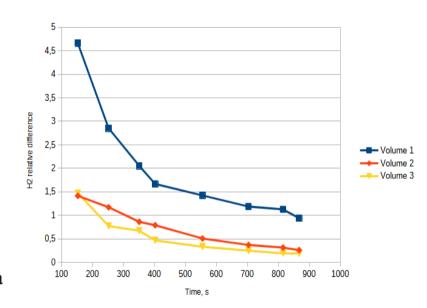
По результатам расчета был получен коэффициент массоотдачи β и пересчитан в удельный расход водорода с поверхности теплоносителя. Результаты были исследованы на точность с помощью индекса GCI.

Оценка массового потока через межфазную границу, реактор

Параметр	Модель 1	Модель 2	Модель 3
Количество элементов сетки	23604	1725376	3133416
Турбулентное число Рейнольдса, Re	8438.86	359.19	51.13
Число Шмидта, Sc	46.37	46.37	46.37
Пульсационная скорость, u, м/с	0.0631	0.0168	0.006904
Коэффициент массоотдачи, β, м/с	3.316E-4	2.077E-4	2.269E-4
Удельный расход, j, кг/(c*м^2)	1.658E-7	1.0385E-7	1.134E-7

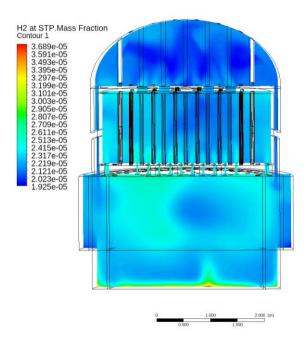
Сеточная сходимость (РБ-166-20)

				/		
	Параметр	Модель 1	Модель 2	2	Модель 3	×
	Относительный размер сетки, h	0.04561	0.01091		0.00894	
	Коэффициент улучшения сетки, r_{32} и r_{21}	4.181		1.22		
	Разность решений, ξ_{32} и ξ_{21}	6.195*10 ⁻⁸		-9.58*10 ⁻⁹		
	Коэффициент, ѕ	1		-1		


- Индекс погрешности сходимости: $p_1 = 9.385$, $p_2 = -48.01$,
- Относительная ошибка аппроксимации: $e_a^{21} = 0.0845$,
- Индекс ошибки сетки для отношения моделей 2 и 3 значения p_1 : $GCI_1 = 1.93\%$, для значения p_2 : $GCI_2 = 10.56\%$.

Здесь индекс 1 соответствует наиболее сгущенной сетке, 3 – наиболее разреженной

Определение времени образования опасной смеси, реактор



- Модель парогазовая часть объема реактора. Рассматривался стояночный режим. Выходные патрубки принимаются закрытыми, три центральных чехла СУЗ разгерметизированы.
- По результатам расчета выявлены места накопления водорода у поверхности теплоносителя, и кислорода под крышкой реактора.
- Для текущей модели обнаружен преимущественно линейный характер накопления водорода и кислорода в объемах со временем время образования опасной смеси составило 33 часа.
- Также обнаружено, что с течением времени разница в содержании водорода в объемах уменьшается по прошествии определенного времени водород может относительно равномерно распределяться по объемам.

Определение времени образования опасной смеси, реактор

Распределение содержания водорода по объему

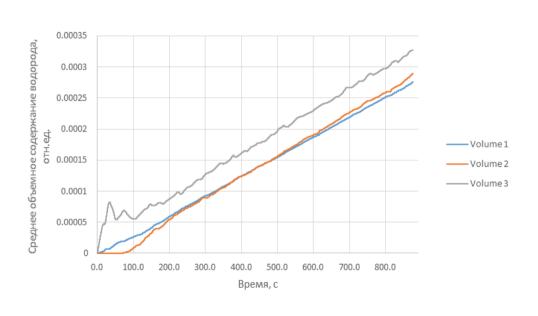
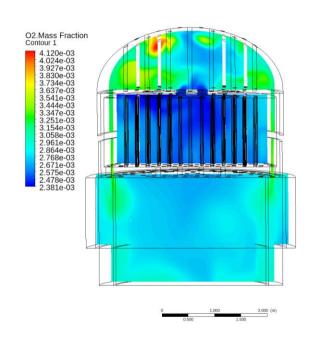



График зависимости мольной доли водорода в объемах от времени расчета

Определение времени образования опасной смеси, реактор

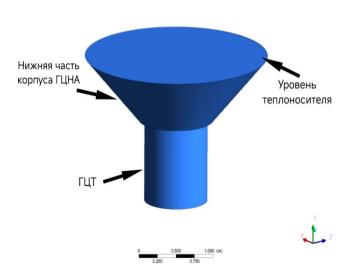
0.0035 Среднее объемное содержание кислорода, 0.003 0.0025 0.002 Volume 2 0.0015 Volume 3 -Volume 1 0.001 0.0005 0.0 200.0 400.0 600.0 800.0 Время, с

Распределение содержания кислорода по объему

График зависимости мольной доли кислорода в объемах от времени расчета

Нейронная сеть и создание базы данных

- Основная цель **CFD-расчетов** оценка в стояночном режиме **поступление водорода** с поверхности теплоносителя и его распределение в объеме. Расход водорода определяется массовым потоком через межфазную поверхность **коэффициентом** массоотдачи
- Задача работы с нейронной сетью метамодель коэффициента массоотдачи при меняющихся граничных условиях для встраивания в СFD-код
- Выбираются входные и выходные параметры
- Проводится ряд **расчетов на основе CFD-кодов** из них формируется множество для обучения и контрольное множество база данных
- Находятся параметры метамодели на основе нейронных сетей:
 - о количество скрытых слоев,
 - о функции активации скрытого слоя
 - о тип потока данных и т.п.


Проводится обучение нейронной сети. После этого нейронную сеть можно использовать для расчетов.

10

Нейронная сеть и создание базы данных, ГЦНА

- **Входные параметры** три температуры: $T_{\text{стенки}}$, $T_{\text{A.3.}}$, $T_{\text{газа}}$ (средняя температура по объему).
- Выходной параметр коэффициент массоотдачи β.
- **На основе CFD-кода** была сформирована **база** данных, включившая в себя 105 расчетов.
- После предварительных расчетов были найдены оптимальные параметры нейронной сети:
 - ✓ количество скрытых слоев 2, порядка 20-17 нейронов на первом, 17-21 на втором;
 - ✓ функции активации гиперболический тангенс;
 - ✓ 75% базы данных на настройку, 25% на проверку.
- В результате получена допустимая ошибка 4-5%.

Нейронная сеть и создание базы данных, ГЦНА

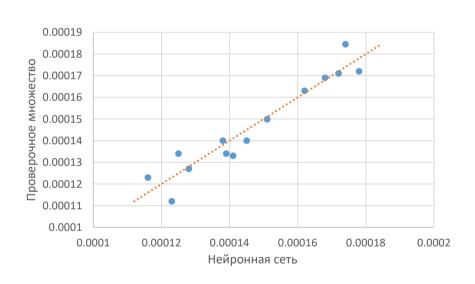
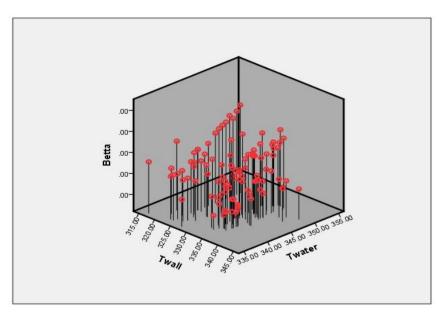
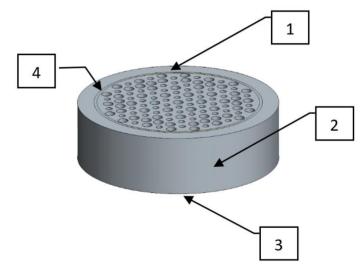
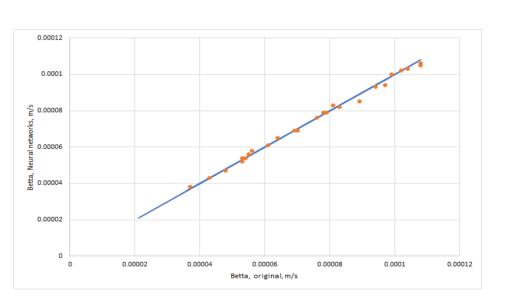



График соответствия коэффициента массоотдачи, полученного с помощью нейронной сети и проверочного множества



Трехмерный график зависимости коэффициента массоотдачи от температур стенки и у поверхности теплоносителя

Нейронная сеть и создание базы данных, реактор



- Входные параметры три температуры: T_{top} , T_{wall} , T_{core} . Выходной параметр коэффициент массоотдачи β .
- **На основе CFD-кода** была сформирована **база** данных, включившая в себя 100 расчетов.
- После предварительных расчетов были найдены оптимальные параметры нейронной сети:
 - ✓ количество скрытых слоев 2, порядка 3 нейронов на первом, 6 на втором;
 - ✓ функции активации гиперболический тангенс;
 - ✓ 75% базы данных на настройку, 25% на проверку.
- В результате получена допустимая ошибка 4%.

Нейронная сеть и создание базы данных, ГЦНА

0.00012 0.00008 0.00008 0.00006 0.00008 0.00006 0.00003 0.0

График соответствия коэффициента массоотдачи, полученного с помощью нейронной сети и проверочного множества

Трехмерный график зависимости коэффициента массоотдачи от температур стенки и у поверхности теплоносителя

Заключение

- Анализируется проблема накопления водорода в оборудовании первого контура и достижения его опасной концентрации.
- Разработан метод исследования проблемы на основе технологии 3D моделирования с использованием CFD-кодов.
- Для модели реактора были получены характеристики транспорта водорода удельный расход составил 1.13Е-7 кг/(с*м²). Время образования опасной смеси при текущих условиях составило 33 часа.
- Предложен подход по моделированию процесса массопереноса на основе метамодели с использованием новой технологии нейросетей.
- С использованием CFD-модели были созданы базы данных для моделей реактора и ГЦНА и получены оптимальные характеристики для обучения нейронной сети.

Спасибо за внимание!