

«Системные исследования энергетических технологий»

Доклад на тему

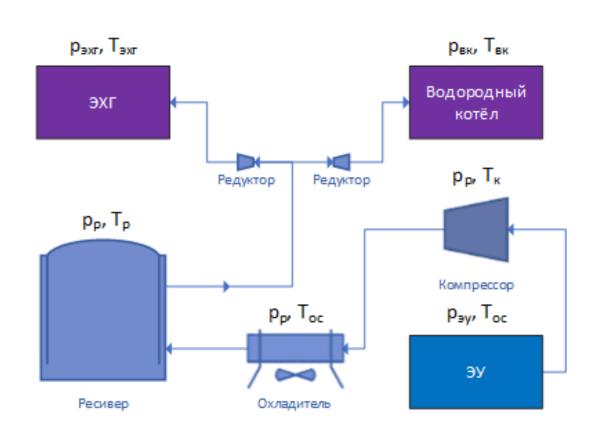
«МАТЕМАТИЧЕСКАЯ МОДЕЛЬ ВОДОРОДНОГО ХРАНИЛИЩА ДЛЯ СИСТЕМ АВТОНОМНОГО ЭНЕРГОСНАБЖЕНИЯ»

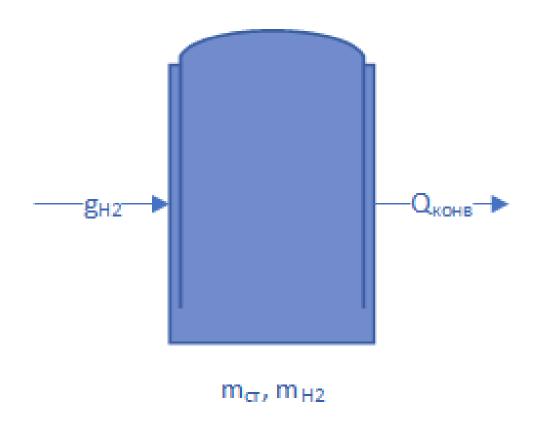
Автор(ы): Исаев Я.В., Зайцев В.А.

Научный руководитель: Нефёдкин С.И.

ВВЕДЕНИЕ

В России около 70% территории не охвачено централизованным энергоснабжением. Энергоснабжение на этих территориях осуществляется автономными системами энергоснабжения.


Автономные системы энергоснабжения представляют собой комплекс технических решений, ориентированный на независимое производство и потребление энергии в условии отсутствия централизованных сетей. Выработка энергии в таких системах производится за счёт двух основных ресурсов: невозобновляемых (различные виды ископаемых топлив) и возобновляемых (энергия ветра, солнца, и т.д.). Использование ископаемых топлив сопряжено с проблемами дорогостоящей доставки в удалённые регионы и выбросами CO_2 в атмосферу при их сжигании. Учитывая высокую стоимость привозного топлива, экономически обоснованные тарифы на энергию в этих регионах значительно превышают тарифы в районах с централизованным энергоснабжением.


ВИЭ характеризуются переменной динамикой выработки энергии, которая отличается от графиков нагрузки потребителей. Это требует внедрения либо систем накопления энергии, либо применения дополнительных источников, работающих на ископаемых видах топлив и компенсирующих разницу между выработкой ВИЭ и текущим потреблением.

Использование ВИЭ совместно с технологиями водородного накопления энергии (ВНЭ), позволяет отказаться от использования дорогостоящего привозного топлива, снизив тем самым стоимость энергии.

БАЛАНСОВАЯ СХЕМА ВОДОРОДНОГО ХРАНИЛИЩА

Балансовая схема системы хранения

Энергетические потоки ресивера

УРАВНЕНИЯ, ОПИСЫВАЮЩИЕ ЭНЕРГЕТИЧЕСКИЕ ПОТОКИ ВОДОРОДНОГО ХРАНИЛИЩА

Внутренняя энергия ресивера	
Описание уравнения	Уравнение
Связь между временным изменением внутренней энергии водорода U_{H_2} и его температурой T_{H_2}	$\frac{dU_{\rm H_2}}{dt} = m_{\rm H_2} c_v \frac{dT_{\rm H_2}}{dt} + g_{\rm H_2} \left[u + \left(\frac{\partial u}{\partial \rho} \right)_{T_{\rm H_2}} \frac{m_{\rm H_2}}{V_{\rm p}} \right];$
Связь между внутренней энергией стенок $U_{\rm ct}$ и их температурой $T_{\rm ct}$ (пренебрегая зависимостью теплоёмкости материала c от температуры стенок):	$\frac{dU_{\rm CT}}{dt} = m_{\rm CT} c \frac{dT_{\rm CT}}{dt};$
Изменение массы водорода в ресивере	$rac{dm_{ m H_2}}{dt} = g_{ m H_2};$

УРАВНЕНИЯ, ОПИСЫВАЮЩИЕ ЭНЕРГЕТИЧЕСКИЕ ПОТОКИ ВОДОРОДНОГО ХРАНИЛИЩА

Энергетические потоки ресивера	
Наполнение ресивера	$rac{dU_{ m H_2}}{dt} = Q_g - Q_{ m KOHB} = g_{ m H_2} h_{ m H_2} (T_{ m BX}, p_{ m p}) - lpha_{ m BH} F (T_{ m H_2} - T_{ m CT});$
Освобождение ресивера	$\frac{dU_{\rm H_2}}{dt} = g_{\rm H_2} h_{\rm H_2} (T_{\rm H_2}, p_{\rm p}) - \alpha_{\rm \scriptscriptstyle BH} F (T_{\rm H_2} - T_{\rm \scriptscriptstyle CT});$
Простой ресивера	$\frac{dU_{\rm H_2}}{dt} = -\alpha_{\rm BH} F(T_{\rm H_2} - T_{\rm CT});$
Изменение внутренней энергии стенок ресивера	$\frac{dU_{\text{CT}}}{dt} = -F\left[\alpha_{\text{BH}}\left(T_{\text{CT}} - T_{\text{H}_2}\right) + \alpha_{\text{H}}\left(T_{\text{CT}} - T_{\text{OC}}\right)\right];$

УРАВНЕНИЯ, ОПИСЫВАЮЩИЕ ЭНЕРГЕТИЧЕСКИЕ ПОТОКИ ВОДОРОДНОГО ХРАНИЛИЩА

Работа сжатия водорода		
Связь между удельной работой	1	
компрессора и давлением (предполагая,	$dl /p_0 \backslash^{\frac{1}{n}} dp$	
что процесс сжатия является	$\frac{dl}{dt} = \left(\frac{p_0}{p}\right)^{\frac{-n}{n}} v_0 \frac{dp}{dt};$	
политропным ($pv^n = const$)):	(1)	
Изменение давления в ресивере $p_{\rm p}(\rho,T_{\rm H_2})$	$\frac{dp_{\rm p}}{dt} = \left(\frac{\partial p_{\rm p}}{\partial \rho}\right)_{T_{H_2}} \frac{g_{\rm H_2}}{V_{\rm p}} + \left(\frac{\partial p_{\rm p}}{\partial T_{H_2}}\right)_{\rho} \frac{dT_{\rm H_2}}{dt};$	
Определение расхода водорода		
Общая мощность на электролиз с сжатием водорода	$N_{\mathrm{yy}}^{\Sigma} = N_{\mathrm{yy}}\left(g_{\mathrm{H}_{2}}^{\mathrm{yy}}, n^{\mathrm{yy}}\right) + N_{\mathrm{K}}\left(g_{\mathrm{H}_{2}}^{\mathrm{yy}}\right);$	

КОЭФФИЦИЕНТЫ ТЕПЛООТДАЧИ

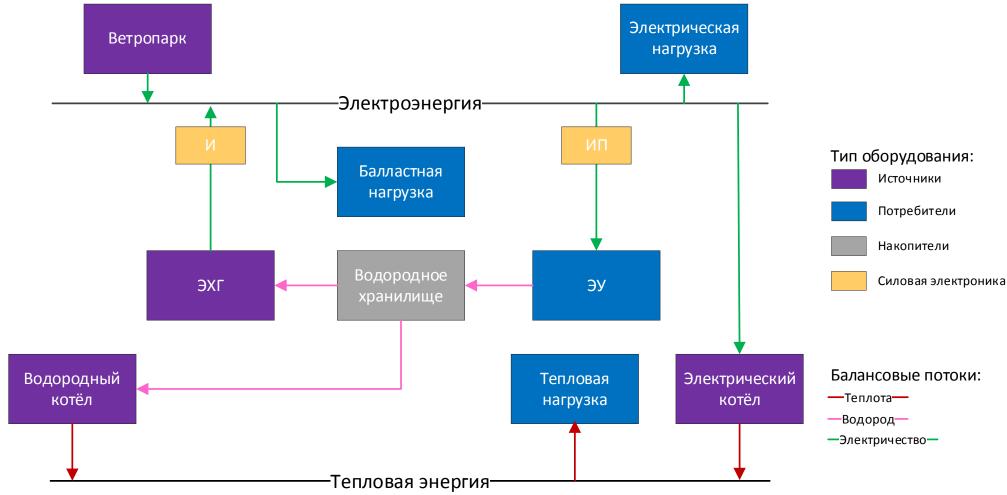
Критериальные зависимости для свободной конвекции и вынужденного обтекания	
$\overline{\text{Nu}}_{\text{ск}}$ для режима обтекания	
Внутреннее	Наружное
	$0,67 \left(\text{Ra}_h \Psi^{-\frac{16}{9}} \right)^{0,25}; 10^4 < \text{Ra}_h \le 10^9.$
$0,22 \left(\frac{\Pr}{0,2+\Pr} \operatorname{Ra}_{d}\right)^{0,28} \left(\frac{h}{d}\right)^{-0.25};$ $2 < h/d \le 10,$ $\Pr \le 10^{5},$ $10^{3} < \operatorname{Ra}_{d} \le 10^{10}.$	$\left[0.825 + 0.387 \operatorname{Ra}_{h}^{\frac{1}{6}} \Psi^{-\frac{8}{27}}\right]^{2}; 10^{9} < \operatorname{Ra}_{h} \le 10^{12}.$
	$0.15 \left(\text{Ra}_h \Psi^{-\frac{16}{9}} \right)^{\frac{1}{3}}; \text{Ra}_h > 10^{12}.$
	$\Psi = 1 + \left(\frac{0.49}{\text{Pr}}\right)^{\frac{9}{16}}.$
Вынужденное обтекание $\overline{Nu}_{вк}$	
4	

$$\overline{\mathrm{Nu}}_{\mathrm{BK}} = 0.3 + \frac{0.62 \mathrm{Re}_{d}^{\frac{1}{2}} \mathrm{Pr}^{\frac{1}{3}}}{\left[1 + \left(\frac{\mathrm{Re}_{d}}{2.82 \cdot 10^{5}}\right)^{\frac{5}{8}}\right]^{\frac{4}{5}}} \left[1 + \left(\frac{\mathrm{Pr}}{\mathrm{Pr}_{c}}\right)^{0.22}; \mathrm{PrRe}_{d} \ge 0.2.$$

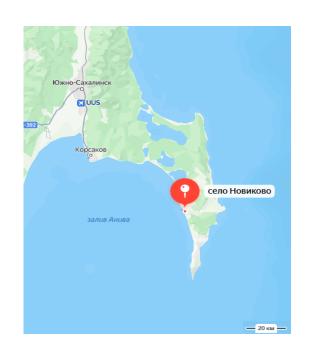
Для наружной поверхности, расчётное значение числа Нуссельта определяется как суперпозиция вынужденной и свободной конвекций: $Nu_H = (\overline{Nu}_{ck}^3 + \overline{Nu}_{gk}^3)^{1/3}$;

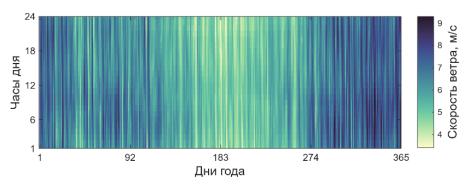
ОЦЕНКА МАССОГАБАРИТНЫХ ХАРАКТЕРИСТИК РЕСИВЕРА

Толщина стенок ресивера $\delta_{\rm cr}$ (определяется максимальным давлением p_{max} и внутренним диаметром $d_{\rm BH}$)	$\delta_{ ext{ct}} = rac{p_{max}d_{ ext{BH}}}{2\sigma_{ ext{doff}}K_{ ext{3}} + p_{max}};$
Объём материала стенок	$V_{\text{CT}} = V_{\text{бок}} + 2V_{\text{T}} = \pi \delta_{\text{CT}} [h(\delta_{\text{CT}} + d_{\text{BH}}) + 0.5d_{\text{BH}}^2];$
Высота (длина) ресивера h	$h=rac{V_{ m p}}{\pi d_{\scriptscriptstyle m BH}}$;
Масса стенок ресивера	$m_{ ext{ct}} = ho_{ ext{ct}} V_{ ext{ct}}$;
Площадь поверхности теплообмена, в предположении тонкости стенок	$F = F_{\text{бок}} + 2F_{\text{T}} = \pi(\delta_{\text{CT}} + d_{\text{BH}})[h + 0.5(\delta_{\text{CT}} + d_{\text{BH}})];$

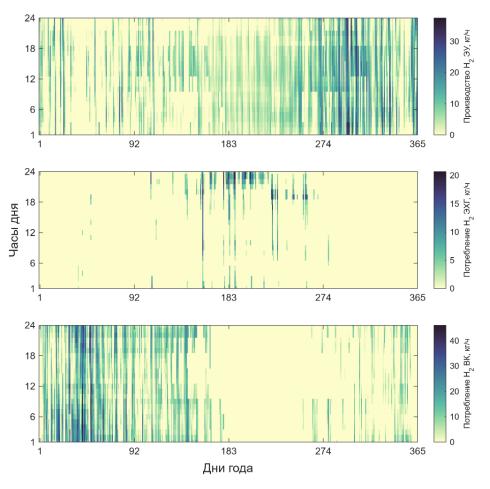

ИТОГОВАЯ СИСТЕМА УРАВНЕНИЙ

$$\begin{split} &\left\{ \frac{dm_{H_2}}{dt} = g_{H_2}, g_{H_2} \in \left\{ g_{H_2}^{\text{3y}}, g_{H_2}^{\text{3xr}}, g_{H_2}^{\text{BK}}, 0 \right\}; \\ &m_{H_2} c_v \frac{dT_{H_2}}{dt} = g_{H_2} \left[h_{H_2} \left(T_{\text{BK}}, p_p \right) - u - \left(\frac{\partial u}{\partial \rho} \right)_{T_{H_2}} \frac{m_{H_2}}{n_p V_p} \right] - \alpha_{\text{BH}} n_p F \left(T_{H_2} - T_{\text{CT}} \right), g_{H_2} = g_{H_2}^{\text{3y}}; \\ &m_{H_2} c_v \frac{dT_{H_2}}{dt} = g_{H_2} \left[p_p \frac{n_p V_p}{m_{H_2}} - \left(\frac{\partial u}{\partial \rho} \right)_{T_{H_2}} \frac{m_{H_2}}{n_p V_p} \right] - \alpha_{\text{BH}} n_p F \left(T_{H_2} - T_{\text{CT}} \right), g_{H_2} \in \left\{ g_{H_2}^{\text{3Xr}}, g_{H_2}^{\text{BK}} \right\}; \\ &m_{H_2} c_v \frac{dT_{H_2}}{dt} = \alpha_{\text{BH}} n_p F \left(T_{H_2} - T_{\text{CT}} \right), g_{H_2} = 0; \\ &m_{\text{CT}} c \frac{dT_{\text{CT}}}{dt} = -F \left[\alpha_{\text{BH}} \left(T_{\text{CT}} - T_{H_2} \right) + \alpha_{\text{H}} \left(T_{\text{CT}} - T_{\text{OC}} \right) \right]; \\ &\frac{dp_p}{dt} = \left(\frac{\partial p_p}{\partial \rho} \right)_{T_{H_2}} \frac{g_{H_2}}{n_p V_p} + \left(\frac{\partial p_p}{\partial T_{H_2}} \right)_{\rho} \frac{dT_{H_2}}{dt}, p_p(0) = p_{H_2} \left(m_{H_2}(0), T_{H_2}(0) \right); \\ &\frac{dl}{dt} = \left(\frac{p_{\text{3y}}}{p_p} \right)^{\frac{1}{n}} v_0 \frac{dp_p}{dt}, l(0) = \frac{n}{n-1} p_{\text{3y}} v_{\text{3y}} \left[\left(\frac{p_p(0)}{p_{\text{3y}}} \right)^{\frac{n-1}{n}} - 1 \right]; \end{split}$$


ЭЛЕМЕНТНО-БАЛАНСОВАЯ СХЕМА АСЭ С ВНЭ



РАСЧЁТНЫЙ ОБЪЕКТ – СЕЛО НОВИКОВО, САХАЛИНСКАЯ ОБЛАСТЬ


Село Новиково на карте

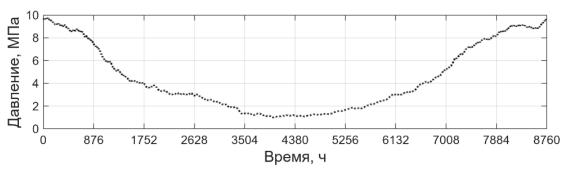
Медианный часовой профиль скорости ветра в Новиково

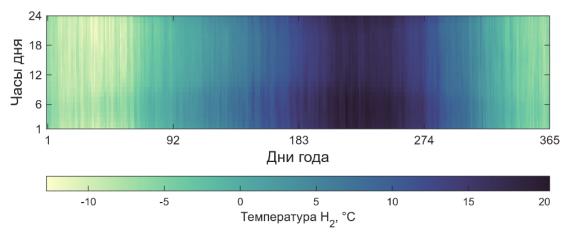
Наименование	N, кВт	Кол.
ДГ-72	800	3
CAT C-18	500	2
ДЭУ-160	160	4
ВЭУ Vestas V27	225	2
Итого	4500	

Существующее оборудование для энергоснабжения

Потребление водорода ЭУ, ЭХГ и ВК

ОБОРУДОВАНИЕ ДЛЯ АЛЬТЕРНАТИВНОЙ СХЕМЫ АСЭ




Тип оборудования	Имя параметра	Значение	Количество, шт
ВЭУ	Номинальная мощность, кВт	225	24
ЭУ	Производительность по водороду, кг $H_2/4$	44,25	1
ЭХГ	Номинальная мощность, кВт	100	5
ЭК	Номинальная мощность, кВт	425	4
ВК	Номинальная мощность, кВт	1100	2

ПРИМЕНЕНИЕ МОДЕЛИ ВОДОРОДНОГО ХРАНИЛИЩА

Ресивер вертикального типа, производства Пензенского		
завода энергетического машиностроения		
Параметр	Значение	
Рабочий объём, м ³	200	
Внутренний диаметр, м	3,4	
Рабочее давление, МПа	10	
Максимальное давление, МПа	12	
Материал	Сталь 10Х17Н13М2Т	
Плотность материала, кг/м ³	7950	
Теплоёмкость, Дж/(кг·К)	500	
Показатель политропы компрессора	1,25	
Ресурс работы, лет	30	
Принимаемая стоимость, тыс. Р	10000	

Давление и температура водорода в хранилище

Количество ресиверов, нужных для обеспечения работы хранилища – 16 шт.

Количество паразитной массы водорода в таком случае составит 2,7 т.

Разработанная модель описывает значения давления и температуры водорода в хранилище, в зависимости от его расхода и температуры окружающей среды. Это позволяет определить количество ресиверов, необходимых для хранения водорода в годовом цикле функционирования автономной системы.