

Разработка теплоаккумулирующего материала на основе гексагидрата хлорида кальция

Авторы: Степанюк К.И.;

Тестов Д.С.; Моржухин А.М.; Моржухина С.В.

Введение и актуальность исследования

Современные задачи энергосбережения требуют разработки новых подходов к управлению тепловой энергией. Теплоаккумулирующие материалы (TAM) представляют собой класс функциональных материалов, способных накапливать и высвобождать значительное количество тепловой энергии при фазовом переходе. Гексагидрат хлорида кальция ($CaCl_2 \cdot 6H_2O$) является перспективным кандидатом благодаря оптимальной температуре плавления, высокой теплоте плавления и относительной доступности.

Энергоэффективность

Снижение потребления энергии в системах отопления и охлаждения

Тепловое буферирование

Стабилизация температурных колебаний в помещениях

Устойчивость

Многократные циклы без деградации свойств материала

Цели и исследовательские задачи

Цель исследования

Разработка функциональных теплоаккумулирующих материалов с фазовым переходом $CaCl_2 \cdot 6H_2O + CaO + \Pi BC$, $CaCl_2 \cdot 6H_2O + Ca(OH)_2 + EG + KMU$, с улучшенными характеристиками стабильности и эффективности.

Задача 1: Получение материала

Комплексное изучение физико-химических свойств гексагидрата хлорида кальция и его поведения при циклических тепловых нагрузках

Задача 2: Исследование материала

Разработка оптимального состава с добавками для повышения кинетической стабильности и предотвращения фазового расслоения.

Задача 3: Валидация

Систематическое исследование термических характеристик и долговечности полученного материала

Рисунок 1 — Схема получения смесей

Полученные данные показывают, что смесь является перспективным материалом для применения в системах пассивного теплосбережения и термальной регуляции.

Оптимальная температура фазового перехода

Ключевые результаты

Успешно синтезирован теплоаккумулирующий материал $CaCl_2 \cdot 6H_2O + CaO + \Pi BC$, $CaCl_2 \cdot 6H_2O + CaCl_2 \cdot 6H_2O + CaCl_2$

Исследование составов методами ТИ и ДСК

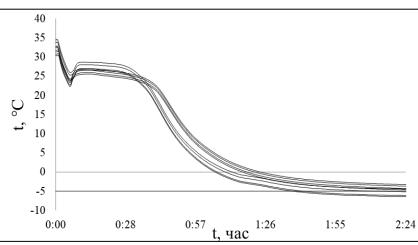


Рисунок 2 — Кривые охлаждения состава $CaCl_2 \cdot 6H_2O + CoCl_2 \cdot 6H_2O + EG + KMЦ$ в течение 8 циклов нагрева/охлаждения $t_{\rm среды=}$ -5°C

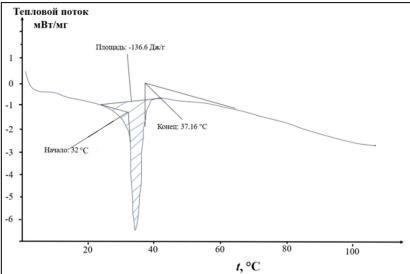


Рисунок 5 — Зависимость теплового потока температуры состава $\text{CaCl}_2 \cdot 6\text{H}_2\text{O} + \text{CoCl}_2 \cdot 6\text{H}_2\text{O} + \text{EG+KMI}$

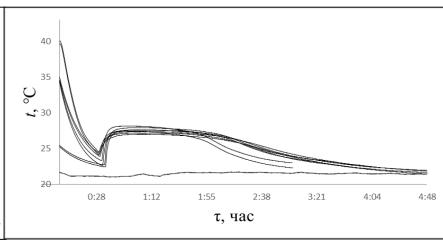


Рисунок 3 — Кривые охлаждения состава $CaCl_2 \cdot 6H_2O + 1\%CaO + 2\%\Pi BC$ в течение 8 циклов нагрева/охлаждения

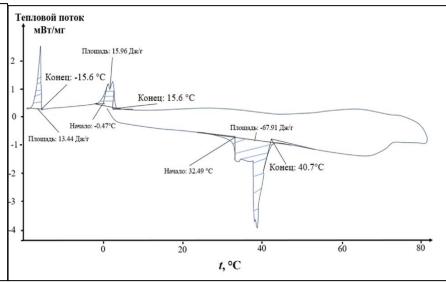


Рисунок 6 — Зависимость теплового потока от температуры состава $\text{CaCl}_2 \cdot 6\text{H}_2\text{O} + 1\%\text{CaO} + 2\%\Pi\text{BC}$

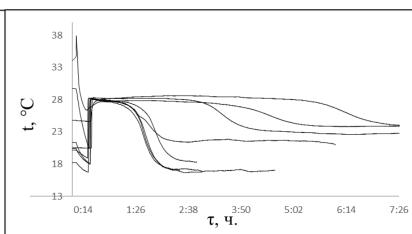


Рисунок 4 — Кривые охлаждения состава $CaCl_2 \cdot 6H_2O + 5\% EG + 2\% KMЦ$ в течение 8 циклов нагрева/охлаждения

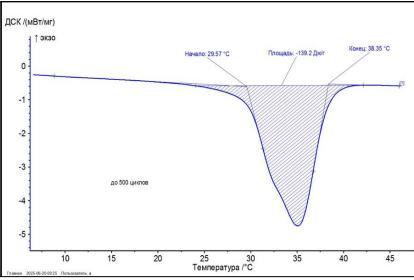


Рисунок 6 — Зависимость теплового потока от температуры $CaCl_2 \cdot 6H_2O + 5\% EG + 2\% KMU$

Итоговая таблица со свойствами оптимизированного состава

Таблица 1 — Физико-химические свойства состава до и после термоциклирования

Параметр	CaCl ₂ ·6H ₂ O +CoCl ₂ ·6H ₂ O +EG+КМЦ	
	До термоциклирования	После 500 циклов
t _{пл.} ДСК, °С (±0.1°С)	32.0±0.1	29.2±0.1
$\Delta H_{\text{пл.}}$ ДСК, Дж/г (±3%)	136.6±4.1	177.4±5.3
t _{кр.} ТИ, °C (±0.5°C)	26±0.5	26.9±0.5
Δt, ТИ, °C (±0.5°C)	1.2±0.5	1.7±0.5
$ au_{ m akk}$, ТИ, мин.	70±16	134±40
$ρ$ κ Γ/M^3 (±1.25%)	1.62±0.02	1.67±0.02
$\sum \Delta H$, Дж/ Γ (±5%)	102.2±5.1	182.9±9.1
S, МДж/м ³ (±5%)	404.2±20.2	436.5±21.8
$c_{\rm p.}~(20^{\circ}{\rm C})~{\rm ДСК},~{\rm Дж/(r\cdot ^{\circ}C)}~(\pm 3\%)$	3.3±0.2	2.1±0.1

Валидация в системе электрического теплого пола

В результате проведённого исследования разработан эффективный теплоаккумулирующий материал с фазовым переходом на основе гексагидрата хлорида кальция, обладающий оптимальными характеристиками для применения в системах пассивного теплосбережения.

Основные достижения

Разработан стабильный материал с воспроизводимыми тепловыми характеристиками и долговечностью

Практическое применение

Пригоден для интеграции в строительные конструкции, системы отопления и охлаждения зданий

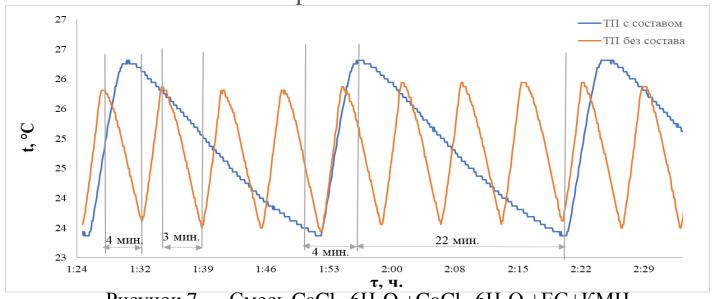


Рисунок 7 — Смесь CaCl₂·6H₂O +CoCl₂·6H₂O +EG+КМЦ при термоциклировании в системе электрического теплого пола

Перспективы развития

Масштабирование производства, улучшение тепловой проводимости, интеграция в композитные материалы, экономическая оценка внедрения

выводы

- 1.Были получены итоговые материалы.
- 2. Характеристики смесей до и после термоциклирования сохраняются на высоком уровне.
- 3.Исследование в системе электрического теплого пола показывает, что материал требует меньших затрат на электроэнергию за счет фазового перехода.

Спасибо за внимание!