

Сравнительная оценка производства электроэнергии от ископаемых топлив и водорода

Коршунов Тимофей Михайлович, магистрант НИУ «МЭИ», инженер АО «ВТИ»

Содержание:

- 1. Классификация водорода по цветовой шкале
- 2. Средняя стоимость электроэнергии
- 3. Средняя стоимость электроэнергии от ископаемых топлив
- 4. Стоимость водорода
- 5. Средняя стоимость электроэнергии от водорода
- 6. Сравнительная оценка

Классификация водорода по цветовой шкале

Цвет	Метод получения	Источник энергии	Наличие выбросов парниковых газов
Бурый/черный	Газификация углей	Любой	Углекислый и угарный газы
Серый	Паровая конверсия метана	Любой	Углекислый газ
Голубой	Газификация или конверсия при улавливании ${\cal CO}_2$	Любой	Углекислый газ при частичном улавливании
Бирюзовый	Пиролиз природного газа	Любой	Отсутствуют (Углерод выделяется в твердой фазе)
Желтый	Электролиз	АЭС	Отсутствуют (ОЯТ)
Зеленый	Электролиз	ВИЭ	Отсутствуют

Средняя стоимость электрической энергии

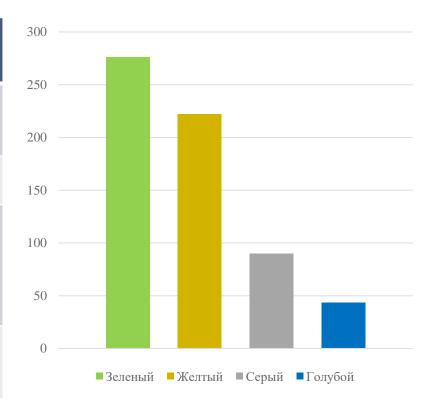
$$LCOE = \frac{\sum (Capital_t + O\&M_t + Fuel_t + Carbon_t + D_t) \cdot (1+r)^{-t}}{\sum MWh \cdot (1+r)^{-t}}$$

где LCOE – средняя стоимость электрической энергии, $\frac{\$}{MBT\cdot q}$; t – временной шаг, год; $Capital_t$ – удельные капитальные затраты в год, $\frac{\$}{MBT\cdot q}$; $O\&M_t$ – удельные операционные затраты в год, $\frac{\$}{MBT\cdot q}$; $Fuel_t$ – затраты на топливо в год, $\frac{\$}{MBT\cdot q}$; $Carbon_t$ – стоимость налога на выбросов CO_2 , $\frac{\$}{MBT\cdot q}$; D_t – стоимость выводы установки их эксплуатации линейно распределенная на время жизни проекта, $\frac{\$}{MBT\cdot q}$; MWh – объем электроэнергии производимой в год, $MBT\cdot q$; r – усредненная ставка дисконтирования, %.

Средняя стоимость электрической энергии от ископаемых топлив

	Технология	Мощность, МВт	Затраты, <u>*</u>				LCOE,
Страна			Капитальные	Операционные	Топливные	Налог на выбросы	\$ МВт∙ч
		Угольные	блоки без улавлі	ивания ${\it CO}_2$ (без CCl	JS)		
Индия	ССКП	400	12,87	8,53	26,43	22,70	70,54
Япония	ССКП	749	27,12	19,31	28,73	24,68	99,84
США	Пылеугольно е сжигание	138	49,13	30,47	20,19	28,22	128,02
Угольные блоки с улавливанием \mathcal{CO}_2 (без CCUS)							
Австралия	ССКП	633	50,34	19,34	39,58	3,40	112,6
США	Угольный блок	499	67,17	42,96	23,32	13,04	146,49

Средняя стоимость электрической энергии от ископаемых топлив



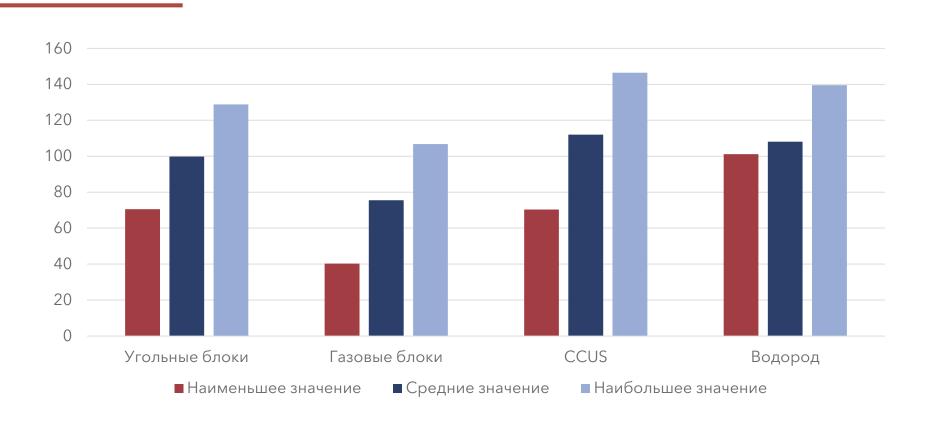
Страна	Технология	Мощность, МВт	Затраты, <u>*</u>				LCOE,
			Капитальные	Операционные	Топливные	Налог на выбросы	\$ МВт∙ч
		Газовые б	блоки без улавли	вания ${\it CO}_2$ (без CCU	S)		
Мексика	ПГУ	835	5,44	5,551	18,89	10,48	40,32
Бельгия	ПГУ	500	11,36	6,67	47,06	10,45	75,54
Румыния	ПГУ	750	3,01	46,37	47,06	10,45	106,79
Газовые блоки с улавливанием \mathcal{CO}_2 (без CCUS)							
США	ПГУ/ГТУ	646	28,13	14,22	22,91	5,09	70,34
Австралия	ПГУ/ГТУ	437	32,96	12,87	64,96	1,48	112,27

Стоимость водорода

Технология	Цвет	Стоимость, <u>\$</u> кг	Стоимость, \$ МВт · ч
Фотоэлектрические установки	Зеленый	11,4 – 9,2	342 – 276
Электролиз при АЭС	Желтый	7,4	222
Паровая конверсия метана/газификаци я биомассы	Серый	3,0	90
Газификация в химических циклах	Голубой	1,45	43,5

Средняя стоимость электрической энергии от водорода

	Технология Мо	Мощность,	Затраты, <u></u>				LCOE,
Страна		МВт	Капитальные	Операционные	Топливные	Налог на выбросы	\$ МВт · ч
	Сер	ый водород, по	олученный метод	ом паровой конвер	сии метана		
Мексика	ПГУ	835	5,44	5,551	90	0	101,12
Бельгия	ПГУ	500	11,36	6,67	90	0	108,13
Румыния	ПГУ	750	3,01	46,37	90	0	139,52
Голубой водород, полученный методом газификации в химических циклах							
Мексика	ПГУ	835	5,44	5,551	43,5	0	54,62
Бельгия	ПГУ	500	11,36	6,67	43,5	0	61,63
Румыния	ПГУ	750	3,01	46,37	43,5	0	93,02


Средняя стоимость электрической энергии от водорода

	т Мощность,		Затраты, <u>*</u>				LCOE,
Страна Те	Технология	МВт	Капитальные	Операционные	Топливные	Налог на выбросы	\$ МВт∙ч
Водородные топливные элементы							
Норвегия	ТЭ	15	45,26	1,69	111,11	0	158,07
Франция	ТЭ	1	83,26	42,66	111,11	0	237,03

Сравнительная оценка

