## Main Findings from FRAMES Model Validation and Beta-Testing

Andrey KHORSHEV

# The Energy Research Institute of the Russian Academy of Sciences

Second Technical Meeting for the INPRO Collaborative Project "Framework for Modelling Energy System" (FRAMES)

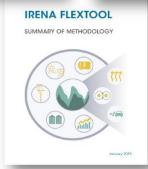
October 28 - 31, 2025, Vienna



#### Content



- 1. Updated FRAMES IRENA FlexTool cross-validation results
- 2. FRAMES Beta-testing activities and results




1. Updated FRAMES – IRENA FlexTool cross-validation results

#### IRENA's FlexTool – simplified UC/ED model











Source: IRENA (https://www.irena.org/Energy-Transition/Planning/Flextool)

Version 3.0 (python based) is under development.

## FRAMES – FlexTool Comparison. Technical

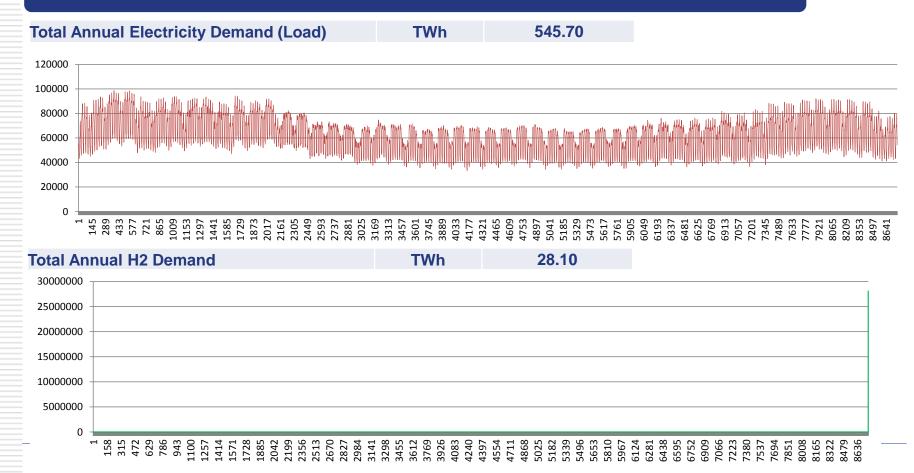


| Feature                                     | FRAMES                                  | FlexTool (v2.0)                                                                |  |  |
|---------------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------|--|--|
| Optimization approach                       | MILP / LP                               | LP                                                                             |  |  |
| Modelling language                          | AMPL (commercial, proprietary)          | GNU MathProg<br>(free, open source)                                            |  |  |
| Solvers used                                | CPLEX (commercial, proprietary, faster) | CoinLP (CLP) (free, open source, slower)                                       |  |  |
| User interface for input / output           | Input: Excel<br>Output: Excel           | Input: Excel Output: Excel                                                     |  |  |
| Modes of operation                          | Dispatch + investment                   | Dispatch only / Dispatch + investment                                          |  |  |
| Built-in capabilities for scenario analysis | No                                      | Yes (scenario approach similar to MESSAGE, bunch start, parallel calculations) |  |  |
| Time representation                         | Only hourly                             | Flexible (use common sense)                                                    |  |  |
| Energy carriers representation              | Limited (electricity, H2, heat?)        | Flexible                                                                       |  |  |
| Regional representation                     | Flexible ?                              | Flexible (use common sense)                                                    |  |  |
| Representation of technologies              | Limited so far                          | Flexible (use common sense)                                                    |  |  |
| EV modelling                                | No                                      | Yes, incl. flexible V2G operation                                              |  |  |



### FRAMES – FlexTool Comparison. Dispatch / reserve representation

| Feature               | FRAMES                                                                  | FlexTool (v2.0)                                                              |
|-----------------------|-------------------------------------------------------------------------|------------------------------------------------------------------------------|
| Dispatch capabilities |                                                                         |                                                                              |
|                       | Start-up of units (integer)                                             | Start-up of capacities (linear)                                              |
|                       | Min generation constraint                                               | Min / max generation constraints                                             |
|                       | Min uptime/downtime                                                     | Min uptime/downtime                                                          |
|                       | Ramp up/down constraint                                                 | Ramp up/down constraint                                                      |
|                       | No system inertia constraint                                            | System inertia constraint                                                    |
| Reserve modelling     |                                                                         |                                                                              |
|                       | Upward and downward reserve                                             | Only upward reserves                                                         |
|                       | Two types of reserves                                                   | One type of reserves                                                         |
|                       | Only online units provide reserves                                      | Only online capacity provide reserves                                        |
|                       | VRE can provide reserves                                                | VRE can't provide reserves                                                   |
|                       | Reserve requirements calculated in the model based on % and hourly load | Reserve requirements should be pre-<br>calculated based on % and hourly load |




## FRAMES – FlexTool Comparison. Hourly data

| Feature                                                       | FRAMES                 | FlexTool (v2.0)                                      | Assumption for validation run                                               |
|---------------------------------------------------------------|------------------------|------------------------------------------------------|-----------------------------------------------------------------------------|
| Electricity demand representation                             | Hourly                 | Hourly                                               | -                                                                           |
| Hydrogen exogenous demand representation                      | Annual                 | Hourly (obligatory for all modelled energy carriers) | Mimicked (cost-free H2<br>storage + all demand at<br>last hour of the year) |
| RES capacity factors                                          | Hourly                 | Hourly                                               | -                                                                           |
| Efficiency time series for thermal generation                 | ciency time series for |                                                      | Not used                                                                    |
| Min / max / fix generation time series for thermal generation | n/a                    | Hourly (optional) (maintenance, FOR)                 | Not used                                                                    |
| Inflows for hydro power plants                                | n/a                    | Hourly (obligatory)                                  | No hydro                                                                    |

#### FRAMES – FlexTool Comparison. Demand representation





### FRAMES – FlexTool Comparison. Reserves / CO2 representation



In FRAMES we have 2 types of upward and downward reserves which calculated based on the total hourly load.

Only upward reserve requirement can be modelled in FlexTool.

Upward reserve requirements should be pre-calculated based on the specified percentage and an hourly load.

In FRAMES we have constraint on annual CO2 emissions – 10 g CO2/kWh

Unfortunately, FlexTool has no possibility to set CO2 emissions limit, but it allows to include CO2 costs.

So we put shadow price of CO2 constraint from FRAMES as CO2 cost in FlexTool - 153.64 \$/t CO2



## FRAMES – FlexTool Comparison. Technology inputs 1

| unit type                     | fuel     | cf profile | input grid | output<br>grid | Existing capacity (MW) | invest<br>ed<br>capaci<br>ty<br>(MW) | max<br>invest<br>(MW) | Existing storage (MWh) |  |      | storage finish |
|-------------------------------|----------|------------|------------|----------------|------------------------|--------------------------------------|-----------------------|------------------------|--|------|----------------|
| Large-scale NPP               | nuc      |            |            | elec           | 0.0                    |                                      | 12000                 |                        |  |      |                |
| LWR-based SMR                 | nuc      |            |            | elec           | 0.0                    |                                      | 999999                |                        |  |      |                |
| Gen IV cogeneration           | nuc      |            |            | elec           | 0.0                    |                                      | 999999                |                        |  |      |                |
| CCGT                          | gas      |            |            | elec           | 0.0                    |                                      | 999999                |                        |  |      |                |
| CCGT + CCS                    | gas-ccs  |            |            | elec           | 0.0                    |                                      | 999999                |                        |  |      |                |
| OCGT                          | gas      |            |            | elec           | 0.0                    |                                      | 999999                |                        |  |      |                |
| CCGT Hydrogen                 |          |            | Hydrogen   | elec           | 0.0                    |                                      | 999999                |                        |  |      |                |
| OCGT Hydrogen                 |          |            | Hydrogen   | elec           | 0.0                    |                                      | 999999                |                        |  |      |                |
| Offshore Wind                 |          | wind_off   |            | elec           | 0.0                    |                                      | 999999                |                        |  |      |                |
| Onshore Wind                  |          | wind_on    |            | elec           | 0.0                    |                                      | 999999                |                        |  |      |                |
| Solar                         |          | PV         |            | elec           | 0.0                    |                                      | 999999                |                        |  |      |                |
| Battery (2-hour)              |          |            |            | elec           | 0.0                    |                                      | 999999                |                        |  | 0.65 | 0.65           |
| Battery (4-hour)              |          |            |            | elec           | 0.0                    |                                      | 999999                |                        |  | 0.65 | 0.65           |
| Electrolyser                  |          |            | elec       | Hydrogen       | 0.0                    |                                      | 999999                |                        |  |      |                |
| Steam-methane Reforming       | smr-gas  |            |            | Hydrogen       | 0.0                    |                                      | 999999                |                        |  |      |                |
|                               | smr-gas- |            |            |                |                        |                                      |                       |                        |  |      |                |
| Steam-methane Reforming + CCS | ccs      |            |            | Hydrogen       | 0.0                    |                                      | 999999                |                        |  |      |                |
| Demand response               | demand   |            |            | elec           | 7000.0                 |                                      |                       |                        |  |      |                |
| Pumped hydro storage          |          |            |            | elec           | 3000.0                 |                                      |                       | 26700                  |  | 0.65 | 0.65           |



#### FRAMES – FlexTool Comparison. Technology inputs 2

|                               |             |      | eff at | ramp up |      | inertia<br>constant |         |          |            | min     |        | self     |
|-------------------------------|-------------|------|--------|---------|------|---------------------|---------|----------|------------|---------|--------|----------|
|                               | afficiency. | min  | min    | -       |      | (MWs/M              |         | conversi |            | downtim |        | discharg |
| unit type                     | efficiency  |      | load   | min)    | min) | W)                  | reserve | on eff   | uptime (h) |         | charge | e loss   |
| Large-scale NPP               | 1.00        | 0.25 | 1.00   | 0.01    | 0.01 |                     | 1.00    |          | 24.0       | 8.0     |        |          |
| LWR-based SMR                 | 1.00        | 0.25 | 1.00   | 0.01    | 0.01 |                     | 1.00    |          | 24.0       | 8.0     |        |          |
| Gen IV cogeneration           | 1.00        | 0.25 | 1.00   | 0.01    | 0.01 |                     | 1.00    |          | 24.0       | 8.0     |        |          |
| CCGT                          | 0.57        | 0.20 | 0.57   | 0.01    | 0.04 |                     | 1.00    |          | 6.0        | 4.0     |        |          |
| CCGT + CCS                    | 0.50        | 0.20 | 0.50   | 0.01    | 0.04 |                     | 1.00    |          | 6.0        | 4.0     |        |          |
| OCGT                          | 0.37        | 0.20 | 0.37   | 0.02    | 0.04 |                     | 1.00    |          | 1.0        | 1.0     |        |          |
| CCGT Hydrogen                 |             | 0.20 |        |         |      |                     | 1.00    | 0.56     | 6.0        | 4.0     |        |          |
| OCGT Hydrogen                 |             | 0.20 |        |         |      |                     | 1.00    | 0.39     | 1.0        | 1.0     |        |          |
| Offshore Wind                 | 1.00        |      |        | 1.00    | 1.00 |                     | 0.90    |          | 0.0        | 0.0     |        |          |
| Onshore Wind                  | 1.00        |      |        | 1.00    | 1.00 |                     | 0.90    |          | 0.0        | 0.0     |        |          |
| Solar                         | 1.00        |      |        | 1.00    | 1.00 |                     | 0.90    |          | 0.0        | 0.0     |        |          |
| Battery (2-hour)              | 1.00        |      |        | 1.00    | 1.00 |                     | 1.00    |          |            |         | 0.90   | 0.00     |
| Battery (4-hour)              | 1.00        |      |        | 1.00    | 1.00 |                     | 1.00    |          |            |         | 0.90   | 0.00     |
| Electrolyser                  |             |      |        |         |      |                     |         | 0.78     |            |         |        |          |
| Steam-methane Reforming       | 0.62        |      |        |         |      |                     |         |          |            |         |        |          |
| Steam-methane Reforming + CCS | 0.56        |      |        |         |      |                     |         |          |            |         |        |          |
| Demand response               | 1.00        |      |        |         |      |                     |         |          |            |         |        |          |

We used the same technological inputs as in FRAMES for all generation and storage technologies, except for H2-to-power technologies where ramping constraint could not be set. Electrolysers electricity needs were converted to efficiency. S-M-R fuel costs were also onverted to efficiency.



#### FRAMES – FlexTool Comparison. Technology inputs – costs

| unit type                     | Var O&M<br>cost, \$/MWh | fixed O&M<br>cost,<br>\$/kW/year | Inv.cost,<br>\$/kW/year | Startup<br>cost,<br>\$/MW |
|-------------------------------|-------------------------|----------------------------------|-------------------------|---------------------------|
| Large-scale NPP               | 1.5                     | 111.1                            | 321.3                   | 500.00                    |
| LWR-based SMR                 | 1.5                     | 111.1                            | 327.4                   | 500.00                    |
| Gen IV cogeneration           | 1.5                     | 111.1                            | 357.2                   | 500.00                    |
| CCGT                          | 5.6                     | 33.6                             | 63.9                    | 150.00                    |
| CCGT + CCS                    | 9.9                     | 35.3                             | 142.6                   | 150.00                    |
| OCGT                          | 5.3                     | 24.1                             | 48.5                    | 50.00                     |
| CCGT Hydrogen                 | 1.3                     | 21.6                             | 39.4                    | 84.00                     |
| OCGT Hydrogen                 | 1.0                     | 10.3                             | 28.6                    | 19.50                     |
| Offshore Wind                 | 3.1                     | 50.8                             | 126.3                   |                           |
| Onshore Wind                  | 3.1                     | 61.1                             | 82.0                    |                           |
| Solar                         | 0.0                     | 13.4                             | 25.5                    |                           |
| Battery (2-hour)              |                         | 4.0                              | 13.3                    |                           |
| Battery (4-hour)              |                         | 7.2                              | 24.0                    |                           |
| Electrolyser                  | 0.0                     | 0.0                              | 65.3                    |                           |
| Steam-methane Reforming       | 0.3                     | 0.0                              | 44.4                    |                           |
| Steam-methane Reforming + CCS | 2.9                     | 0.0                              | 68.2                    |                           |
| Demand response               | 500.0                   |                                  |                         |                           |

| fuel        | fuel price,<br>\$/MWh | CO2 content, t/MWh |
|-------------|-----------------------|--------------------|
| gas         | 20.1                  | 0.20               |
| nuclear     | 8.5                   | 0.00               |
| gas-ccs     | 20.1                  | 0.02               |
| smr-gas     | 20.1                  | 0.17               |
| smr-gas-ccs | 20.1                  | 0.02               |

Fuel costs are calculated based on the fuel price and efficiency of technology.

We used the same costs as in FRAMES for all generation and storage technologies. For H2 production and H2-to-power technologies we had to recalculate them since in Flextool all fixed costs should be expressed on a per MW of input basis (not output).



| PARAMETER                                                   | Unit                                         | FRAMES<br>Value | FlexTool<br>v2.0 Value | Note                                     |
|-------------------------------------------------------------|----------------------------------------------|-----------------|------------------------|------------------------------------------|
| PLATFORM INFORMATION                                        |                                              |                 |                        |                                          |
| Mathematical Optimization Method                            |                                              | MILP            | LP                     |                                          |
| Optimizer                                                   |                                              | CPLEX           | CLP                    |                                          |
| Run Time                                                    | [min]                                        | 44.02           | 75                     | FRAMES - NEOS server,<br>FT – average PC |
| OBJECTIVE FUNCTION                                          |                                              |                 |                        |                                          |
| Total System Cost                                           | Billion \$                                   | 37.611          | 37.35                  |                                          |
| Specific Cost of meeting Electricity Demand                 | [\$/MWh <sub>e</sub> ]                       | 68.92           | 68.45                  |                                          |
| Specific Cost of meeting Electricity and Hydrogen<br>Demand | [\$/MWh <sub>e</sub> +MWh<br><sub>H2</sub> ] | 65.55           | 65.09                  |                                          |



| PARAMETER                                                              | Unit  | FRAMES<br>Value | FlexTool<br>v2.0<br>Value | Note        |
|------------------------------------------------------------------------|-------|-----------------|---------------------------|-------------|
| OPTIMIZED GENERATION CAPACITY                                          |       | 139.755         | 143.352                   |             |
| Large-Scale Nuclear Power Plant (NPP)                                  | [GW]  | 17              | 17                        |             |
| (installed capacity <mark>0</mark> GW, potential capacity up to 17 GW) | [Gvv] | 17              | 17                        |             |
| Light Water Reactor Technology-based Small Modular Reactor (SMR)       | [GW]  | 30.583          | 28.821                    |             |
| Advanced (Gen IV) Nuclear Reactor for Combined Heat and Power (CHPNPP) | [GW]  | 0               | 0                         |             |
| Closed-Cycle Natural Gas Turbine (CCGT)                                | [GW]  | 10.345          | 11.236                    |             |
| CCGT with Carbon Capture and Sequestration (CCGT+CCS)                  | [GW]  | 6.944           | 7.372                     |             |
| Open-Cycle Natural Gas Turbine (OCGT)/Reciprocating Natural Gas Engine | [GW]  | 0.839           | 7.160                     | Because of  |
| Closed-Cycle Hydrogen Turbine (CCHT)                                   | [GW]  | 0               | _                         | CO2         |
| Open-Cycle Hydrogen Turbine (OCHT)/Reciprocating Hydrogen engine       | [GW]  | 6.599           | 0                         | constraint? |
| Distributed Solar (PV)                                                 | [GW]  | 0               | 0                         |             |
| (installed 0 GW)                                                       | [Gvv] | U               | U                         |             |
| Concentrating Solar                                                    | [GW]  | 41.633          | 43.925                    |             |
| (installed 0 GW)                                                       | [Gvv] | 41.033          | 43.323                    |             |
| Onshore Wind                                                           | [CW]  | 0               | 0                         |             |
| (installed 0 GW)                                                       | [GW]  | U               | U                         |             |
| Offshore Wind                                                          | [GW]  | 25.812          | 27.837                    |             |
| (installed 0 GW)                                                       | [GW]  | 23.012          | 21.031                    |             |



| PARAMETER                                              | Unit  | FRAMES<br>Value | FlexTool v2.0<br>Value | Note                      |
|--------------------------------------------------------|-------|-----------------|------------------------|---------------------------|
| OPTIMUM STORAGE CAPACITY                               |       | 124.872         | 102.056                |                           |
| Reservoir (Dam) Storage (installed and potential 0 GW) | [GWh] | 0               | 0                      |                           |
| Pumped Hydro Storage (installed and potential 26.7 GW) | [GWh] | 26.7            | 26.7                   |                           |
| 2-h Battery Storage                                    | [GWh] | 37.503          | 0                      |                           |
| 4-h Battery Storage                                    | [GWh] | 60.669          | 75.356                 |                           |
| CURTAILMENT OF RENEWABLES                              |       |                 |                        |                           |
| Solar                                                  | [GWh] | 0               | 10.390                 | 0.03% of solar generation |
| Onshore Wind                                           | [GWh] | 0               | 0                      |                           |
| Offshore Wind                                          | [GWh] | 0               | 0                      |                           |

Generation of PVs was partially curtailed since we don't have curtailment penalty in the test case.



|                                                                        | _     |        |            |                        |
|------------------------------------------------------------------------|-------|--------|------------|------------------------|
| PARAMETER                                                              | Unit  | FRAMES | FlexTool   | Note                   |
|                                                                        |       | Value  | v2.0 Value |                        |
| ELECTRICITY SUPPLY                                                     |       | 600.66 | 571.61     |                        |
| Large-Scale Nuclear Power Plant (NPP)                                  | [TWh] | 141.30 | 142.74     |                        |
| Light Water Reactor Technology-based Small Modular Reactor (SMR)       | [TWh] | 265.47 | 247.48     |                        |
| Advanced (Gen IV) Nuclear Reactor for Combined Heat and Power (CHPNPP) | [TWh] | 0      | 0          |                        |
| Closed-Cycle Natural Gas Turbine (CCGT)                                | [TWh] | 12.75  | 14.00      |                        |
| CCGT with Carbon Capture and Sequestration (CCGT+CCS)                  | [TWh] | 20.36  | 22.33      |                        |
| Open-Cycle Natural Gas Turbine (OCGT)/Reciprocating Natural Gas Engine | [TWh] | 0.30   | 1.78       |                        |
| Closed-Cycle Hydrogen Turbine (CCHT)                                   | [TWh] | 0      | 0          |                        |
| Open-Cycle Hydrogen Turbine (OCHT)/Reciprocating Hydrogen engine       | [TWh] | 1.49   | 0          |                        |
| Solar                                                                  | [TWh] | 36.84  | 38.87      |                        |
| Onshore Wind                                                           | [TWh] | 0      | 0          |                        |
| Offshore Wind                                                          | [TWh] | 99.58  | 107.38     |                        |
| Reservoir (Dam) Storage                                                | [TWh] | 0      | 0          |                        |
| Pumped Hydro Storage                                                   | [TWh] | 2.41   | -0.85      | Should be shown as net |
| 2-h Battery Storage                                                    | [TWh] | 6.70   | 0          | consumers to avoid     |
| 4-h Battery Storage                                                    | [TWh] | 13.46  | -2.12      | double counting        |
| OTHER SYSTEM ELEMENTS                                                  |       |        |            |                        |
| DSM (limit 7 GW)                                                       | [TWh] | 0.32   | 0.38       |                        |
| Not Served Energy                                                      | [TWh] | 0      | 0          |                        |



| PARAMETER                                                   | Unit                  | FRAMES<br>Value | FlexTool<br>v2.0 Value | Note |
|-------------------------------------------------------------|-----------------------|-----------------|------------------------|------|
| HYDROGEN SUPPLY                                             |                       |                 |                        |      |
| Total H <sub>2</sub> supply                                 | [TWh_H <sub>2</sub> ] | 32.625          | 28.100                 |      |
| H <sub>2</sub> Supplied by Electrolysis Systems             | [TWh_H <sub>2</sub> ] | 23.391          | 19.380                 |      |
| H <sub>2</sub> Supplied by High Temperature Process Systems | [TWh_H <sub>2</sub> ] | 0               | 0                      |      |
| H <sub>2</sub> Supplied by S-M-R Systems w/o CCS            | [TWh_H <sub>2</sub> ] | 0               | 0                      |      |
| H <sub>2</sub> Supplied by S-M-R Systems with CCS           | [TWh_H <sub>2</sub> ] | 9.234           | 8.719                  |      |
| HYDROGEN UTILIZATION                                        |                       |                 |                        |      |
| H <sub>2</sub> used for generation units                    | [TWh_H <sub>2</sub> ] | 4.525           | 0                      |      |
| H <sub>2</sub> sold to exogenous use                        | [TWh_H <sub>2</sub> ] | 28.1            | 28.1                   |      |



| PARAMETER                                                              | Unit                                      | FRAMES<br>Value | FlexTool<br>v2.0 Value | Note                        |
|------------------------------------------------------------------------|-------------------------------------------|-----------------|------------------------|-----------------------------|
| EMISSIONS                                                              |                                           |                 |                        |                             |
| Total CO <sub>2</sub> emitted                                          | [Million ton]                             | 5.738           | 7.091                  | No CO2 constraint           |
| CO <sub>2</sub> emitted by the thermal generation units                | [Million ton]                             | 5.506           |                        |                             |
| CO <sub>2</sub> emitted by the S-M-R Systems                           | [Million ton]                             | 0               |                        |                             |
| CO <sub>2</sub> emitted by the S-M-R Systems with CCS                  | [Million ton]                             | 0.232           |                        |                             |
| Specific CO <sub>2</sub> Emission for meeting Electricity and Hydrogen | [\$/MWh <sub>e</sub> +MWh <sub>H2</sub> ] | 10              | 12.4                   |                             |
| Specific CO <sub>2</sub> Emission for meeting Electricity Demand       | [\$/MWh <sub>e</sub> ]                    | 10.09           |                        |                             |
| Specific CO <sub>2</sub> Emission for meeting Hydrogen Demand          | [\$/MWh <sub>H2</sub> ]                   | 8.25            |                        |                             |
| CO <sub>2</sub> price                                                  | [\$/ton]                                  | 153.64          | 153.64                 | Set to mimic CO2 constraint |

CO2 emissions are 25% higher in FlexTool compared with FRAMES



## FRAMES – FlexTool Comparison. Optimization results 7 – updated

| PARAMETER                                                                    | Unit         | FRAMES<br>Value | FlexTool<br>v2.0 Value | Note   |
|------------------------------------------------------------------------------|--------------|-----------------|------------------------|--------|
| BREAK-DOWN OF OBJECTIVE FUNCTION                                             | [Billion \$] | 37.60           | 38.44                  |        |
| Fixed capital cost thermal units                                             | [Billion \$] | 17.45           | 17.02                  |        |
| Fixed Operational cost thermal units:                                        | [Billion \$] | 6.07            | 5.90                   |        |
| Variable and startup cost of thermal units                                   | [Billion \$] | 5.67            | 5.74                   |        |
| Total cost of energy not served                                              | [Billion \$] | 0               | 0                      |        |
| Total cost of reserved not served                                            | [Billion \$] | 0               | 0                      |        |
| Total cost of DSM                                                            | [Billion \$] | 0.16            | 0.19                   |        |
| Capital cost of storage                                                      | [Billion \$] | 8.0             | 0.45                   |        |
| Fixed capital cost solar                                                     | [Billion \$] | 1.62            | 1.71                   |        |
| Fixed capital cost wind - onshore                                            | [Billion \$] | 0               | 0                      |        |
| Fixed capital cost wind - offshore                                           | [Billion \$] | 4.57            | 4.93                   |        |
| Variable cost of solar and wind                                              | [Billion \$] | 0.31            | 0.52                   |        |
| Capital cost electrolysers                                                   | [Billion \$] | 0.52            | 0.48                   |        |
| Capital cost S-M-R Systems with CCS                                          | [Billion \$] | 0.12            | 0.07                   |        |
| Variable costs of H <sub>2</sub> production S-M-R Systems with CCS           | [Billion \$] | 0.31            | 0.34                   |        |
| Revenue from H <sub>2</sub> sold (negative)                                  | [Billion \$] | 0               | 0                      |        |
| Cost of CO <sub>2</sub> emitted by thermal units                             | [Billion \$] | 0               | 1.05                   |        |
| Cost of CO <sub>2</sub> for H <sub>2</sub> production S-M-R Systems with CCS | [Billion \$] | 0               | 0.04                   |        |
| TOTAL COSTS w/o CO2 costs                                                    | [Billion \$] | 37.60           | 37.35                  | ≈ 0.7% |

#### Conclusions / Recommendations – MAJOR



- 1) FRAMES FlexTool cross-validation went well as we have very similar optimization results given differences between the models. The only major difference is the use of H2 for power generation.
- 2) UC/ED models (even with an "investment mode") should not be considered as a substitute for the long-term dynamic capacity expansion models
- 3) It should be possible to run the model in non-integer mode. Otherwise, for large systems, the computation time will be very long. Not everyone has access to commercial solvers FIXED
- 4) Improve flexibility of representation of energy carriers, regions, technologies (hydro, CHP, etc.). In its current state, the scope of FRAMES application is limited.
- 5) Possibility to model EVs, including flexible V2G operation
- 6) H2 storage with corresponding costs and losses should be modelled. Exogenous H2 demand should be presented at least in monthly/weekly domain.
- 7) System inertia limit should be considered.



2. FRAMES Beta-testing activities and results

#### Plan of beta-testing activities



#### **The Challenge:**

An initial idea of case study for a Russian region proved unfeasible without considering CHPs, even in southern regions of country.

#### A dual-path beta-test

#### **Track A: Core Capabilities**

Objective: Stress-test the model's fundamental mechanics.

Method: Running the model through various hypothetical research scenarios to ensure mathematical and economic logic is sound

#### **Track B: "Real" System Application**

Objective: Test the model on a small, "close to real-world" system

Method: Modelling the decarbonization of a hypothetical small island (inspired by the IAEA's Antigua ESST case study)



### Track A – List of Hypothetical Research Cases

| Case | Description 1                                     | Description 2                            |  |  |
|------|---------------------------------------------------|------------------------------------------|--|--|
| 1    | 500 hours period in the middle of the year        | CO2 limit = 10 kg/MWh                    |  |  |
| 2    | Full leap year                                    | CO2 limit = 10 kg/MWh                    |  |  |
| 3    | 500 hours period in the middle of the year        | CO2 limit - none, CO2pr=10,H2pr=5        |  |  |
| 4    | 500 hours period in the middle of the year        | no CO2 limit, CO2price=0, H2price=0      |  |  |
| 5    | 500 hours period in the middle of the year        | no CO2 limit, CO2price=0, H2price=1      |  |  |
| 6    | 500 hours period in the middle of the year        | no CO2 limit, CO2price=10, H2price=1     |  |  |
| 7    | 500 hours period in the middle of the year        | no CO2 limit, CO2price=100,<br>H2price=5 |  |  |
| 8    | 500 hours period in the middle of the year        | no CO2 limit, CO2price=300,<br>H2price=0 |  |  |
| 9    | Case 1 + only 4-hour storages are in optimization | CO2 limit = 10 kg/MWh                    |  |  |
| 10   | Case 1 + Hydro RoR and Dam added                  | CO2 limit = 10 kg/MWh                    |  |  |

All hypothetical cases were based on the FRAMES\_VerB\_Input\_Assu mption\_UserAid\_R1.xlsx provided by IAEA



#### Track B – List of Small Island System Cases

| Nº | Electricity demand | Candidate technologies                                       | Carbon intensity of<br>electricity<br>generation,<br>kg CO2/MWh | CO2 price,<br>\$/tCO2 |
|----|--------------------|--------------------------------------------------------------|-----------------------------------------------------------------|-----------------------|
| 0  | _                  | Only capacities obtained from                                |                                                                 |                       |
|    | Base               | ESST simulation                                              | -                                                               | -                     |
| 1  | Base               | oil, solar, wind                                             | -                                                               | -                     |
| 2  | Base               | oil, solar, wind, batteries,                                 | -                                                               | -                     |
| 3  | Base               | oil, solar, wind, batteries, H2 (prod+storage+el.generation) | _                                                               | _                     |
| 4  | Base               | oil, solar, wind, batteries                                  | 50                                                              | -                     |
|    |                    | oil, solar, wind, batteries, H2                              |                                                                 |                       |
| 5  | Base               | (prod+storage+el.generation)                                 | 50                                                              | -                     |
| 6  | Base               | oil, solar, wind, batteries                                  | 10                                                              | -                     |
| 7  | Door               | oil, solar, wind, batteries, H2                              | 40                                                              |                       |
| 7  | Base               | (prod+storage+el.generation)                                 | 10                                                              | -                     |
| 8  | Base + EV          | oil, solar, wind, batteries, H2 (prod+storage+el.generation) | 50                                                              | -                     |
| 9  | Base + EV          | oil, solar, wind, batteries, H2 (prod+storage+el.generation) | 10                                                              | -                     |
| 10 | Base               | oil, solar, wind, batteries, H2 (prod+storage+el.generation) |                                                                 | 50                    |
| 11 | Base               | oil, solar, wind, batteries, H2 (prod+storage+el.generation) | _                                                               | 100                   |
| 12 | Base               | oil, solar, wind, batteries, H2 (prod+storage+el.generation) | -                                                               | 200                   |

Starting with the Case 4, we were not able to get the results in MILP formulation in reasonable time (8 hours on NEOS server).

So we had to switch to "relaxed" optimization.

The optimization results were satisfactory after that.

### Beta-Testing – Major Issues Found (1)



#### <u>Issue 1</u> – The inability to model the operation of CHP plants.

Possible temporary fix: incorporate into the model the ability to specify hourly minimum generation levels for certain thermal power plants

# <u>Issue 2</u> – CO2 emissions constraint doesn't work properly when modelling part of the year.

In the equation limiting CO2 emissions, the maximum specific CO2 emission factor (input parameter) is multiplied by the **annual** demand for electricity and hydrogen: (<= MAX\_CO2[r] \* (LOAD\_EL\_TWH[r] + LOAD\_H2\_TWH[r]) \* 1E6);

Possible fix: LOAD\_EL\_TWH[r] + LOAD\_H2\_TWH[r] should be corrected by the fraction of the demand in part of the year in consideration.

### Beta-Testing – Major Issues Found (2)



#### <u>Issue 3</u> – Possible wrong representation of the storages.

Model can invest in "excluded" BESS/PH technologies. Additional BESS/PH will not appear if NO storage technologies at all were selected for inclusion into the model.

'OPTION\_St' parameter used only in the objective function and electrical load balance (P\_LOAD\_bal). That means that "excluded" storage options can still contribute to all of the storage constraints, with no costs actually.

Possible fix: Maximum storage capacity should be set to 0 if 'OPTION\_St' = 0.

| 1 | Set-up file param: OPTION_St_L Eta_St_L |                  |                                      | =====                                               | Results                    |                                                                                       |                                                                          |                                                                                                                    |
|---|-----------------------------------------|------------------|--------------------------------------|-----------------------------------------------------|----------------------------|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
|   | 1<br>2<br>3<br>4<br>5                   | 0<br>9<br>1<br>9 | 1.00<br>0.75<br>0.90<br>0.90<br>0.90 | 0.00011<br>0.11236<br>0.50000<br>0.25000<br>0.10000 | Region<br>1<br>1<br>1<br>1 | Technology<br>Dam Hydro<br>Pumped Hydro<br>2-hour BESS<br>4-hour BESS<br>12-hour BESS | Installed Capacity [GWh]<br>0.000<br>26.700<br>10.856<br>26.090<br>0.000 | Electricity Supply [MWh]<br>0.00000000e+00<br>3.73230625e+06<br>3.20112653e+06<br>9.60790516e+06<br>0.00000000e+00 |
|   |                                         |                  |                                      |                                                     |                            | 26                                                                                    |                                                                          |                                                                                                                    |

### Beta-Testing – Major Issues Found (3)



# <u>Issue 4</u> – Constraints on the maximum output (capacity) of RES power plants.

During modelling of a small island power system, we found that the RES development may exceed the available potential. So it's really needed to have a possibility to set a constraint on maximum generation or capacity of certain types of RES power plants.

#### <u>Issue 5</u> – User-proof measures.

To minimize the risk of incorrect data entry, it is advised to implement validation rules that restrict input to predefined ranges or allow selection through dropdown lists. Additionally, some cells can be locked to prevent accidental changes. It is also necessary to verify that the load profile is normalized. Alternatively, it would be better to add a possibility to automatically re-normalize the load profile when the model is being generated.



#### The Energy Research Institute of the Russian Academy of Sciences

www.eriras.ru epos@eriras.ru

# Thank you for your attention!