Implications of tariff and tax benefits for oil development in East Siberia

A. S. Lukyanov
Senior scientist, PhD, Energy Research Institute of the Russian Academy Sciences (ERI RAS)
Simplified field development model

\[q(t) = m \cdot Q(t) \]

- \(q(t) \) - annual production;
- \(Q(t) \) - residual recoverable oil reserves;
- \(m = \text{const} \) - recovery rate

\[\dot{Q}(t) = -q(t) \]

Capex

\[K = K_F + k \cdot m \cdot Q(0) \]

Opex

\[C(t) = c \cdot q(t) \]
Annual oil production on the field
(3 options of recovery rate)

\[Q(0) = 200 \text{ mln t} \]
Discounted cumulative values

\[NPV = \sum_{t=0}^{\infty} \frac{l}{(1+E)^t} \left[R(t) - C(t) - Tax(t) - K(t) \right] \]

\[DCT = \sum_{t=0}^{\infty} \frac{l}{(1+E)^t} Tax(t) \]

\[DCC = \sum_{t=0}^{\infty} \frac{l}{(1+E)^t} K(t) \]

\[CDOP = \sum_{t=0}^{\infty} \frac{l}{(1+E)^t} q(t) \]

\[E = 10 \% \]
Field development performance vs. offtakes

Implication of Κφ

$ billion

recovery rate

IRR

NPV

f-criterion

DCC

DCT

IRR
Optimal recovery rate

\[m_f = \sqrt{\frac{(p - c - h)E}{(1 + f)k}} - E \]

\(p \) – price;

\(c \) – relative Opex;

\(k \) – relative Capex per unit capacity;

\(h \) – tax rate (summary), $/t
Condition of investment \(\Delta DCC \) realization

\[\Delta NPV > f \cdot \Delta DCC, \]

\(f \) – investment marginal performance;

\(f \)-criterion

\(\text{ЧДД}-f\cdot\text{ДК} \)
Field performance vs. tax rate

billion

Tax rate, $$/t$

recovery rate, IRR

NPV

f-criterion

DCC

DCT

IRR

recovery rate
Effect of reducing the tax rate on the amount of tax
A tax incentive consistency ratio

\[
k_{сл} = \frac{Eh}{2(p-c-h)m_f}
\]

\[
k_{сл} = 1 \text{ – maximum tax}
\]
Efficient field entry condition

\[p > c + h + (1 + f) \left(\sqrt{Ek} + \sqrt{\frac{K\phi}{Q_0}} \right)^2 \]
Oil price relationship for tax rate

![Graph showing the relationship between oil price and tax rate. The graph includes curves labeled 'Optimum', 'Breaks for ESPO', 'No breaks', and 'Optimum, f=0'. The x-axis represents oil price in $/bbl, ranging from 15 to 145, and the y-axis represents tax rate in $/bbl, ranging from 0 to 120. The graph illustrates how different scenarios affect the relationship between oil price and tax rate.]
Line gradient for tax formula

Optimum

Breaks for ESPO

No breaks

Optimum, f=0

Price, $/bbl
Net Present Value (*NPV*)

![Graph showing Net Present Value (NPV) with various parameters and price axes.](image)
Discounted Cumulative Capex (*DCC*)

Graph showing various lines representing different scenarios for Discounted Cumulative Capex (DCC) with parameters such as $k=600$, $k=1000$, $Кф=800$, $Кф=0$, $с=40$, and $с=150$. The graph plots Price per ton ($/t$) against $\$ billion$. Each line corresponds to a different set of parameters, demonstrating how changes in these parameters affect the DCC. The legend indicates which line corresponds to which set of parameters, providing a visual representation of the implications of varying these factors.
NPV/DCC ratio

![Graph showing NPV/DCC ratio with various price scenarios and parameters.]
Internal Rate of Return (IRR)
Discounted cumulative taxes and transportation costs (DCT)
Optimum recovery rate
Optimum tax (plus tariff) rate

Price, $/bbl

- $/bbl
- f=0
- k=600
- k=1000
- Кф=0
- Basic
- Кф=800
- c=40
- c=150

20
Thank you for attention!