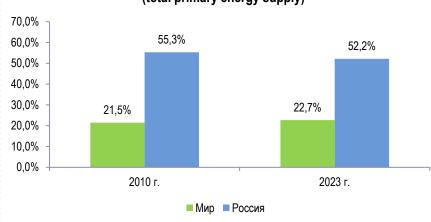
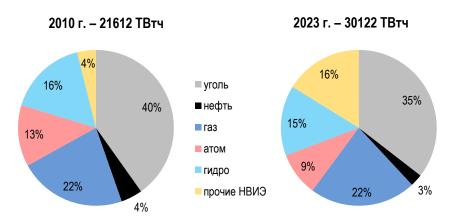
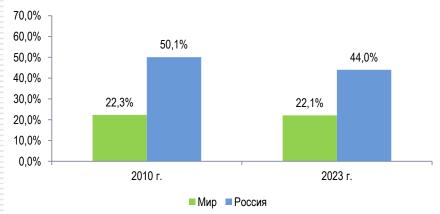
Адаптация электроэнергетики к изменениям на газовом рынке - пределы возможного

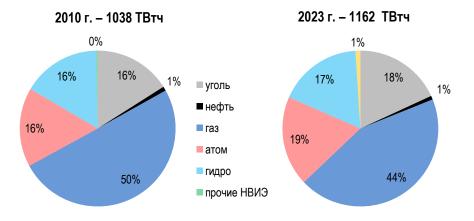
Веселов Федор Вадимович, к.э.н. Хоршев Андрей Александрович, к.э.н.

ВСЕРОССИЙСКАЯ ШКОЛА МОЛОДЫХ УЧЕНЫХ «Системные исследования энергетических технологий»


Москва, ноябрь 2025 г.


Роль газа в мировой и российской электроэнергетике

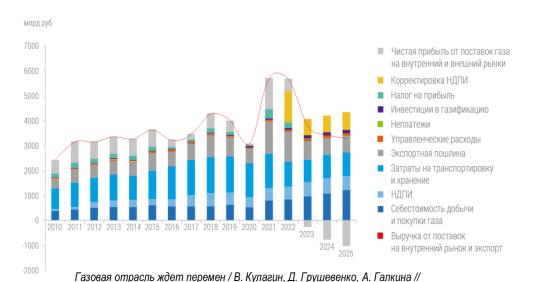

Доля газа в общем предложении первичной энергии (total primary energy supply)


Изменение производства электроэнергии в мире

Доля газа в общем производстве электроэнергии (total electricity production)

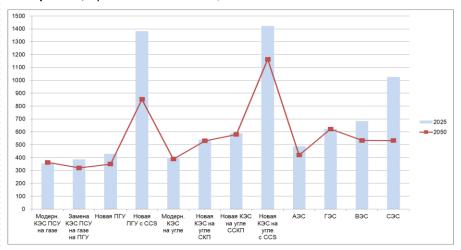
Изменение структуры производства электроэнергии в России

Источник: IEA statistic data

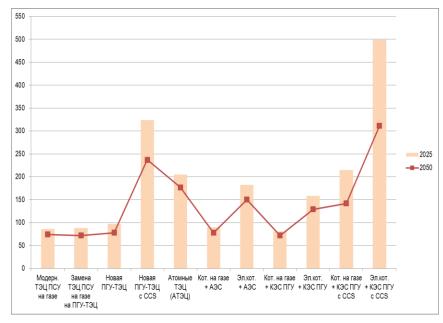

Внутрироссийский рынок газа – влияние внешних факторов

- Цена на газ для российских потребителей остается достаточно низкой, что характерно для стран-импортеров газа
- На внутреннем рынке газа действует модель прямого централизованного регулирования цен на газ (ФАС РФ) по территориальным поясам
- Долгое время на внутреннем рынке газа рост цен сдерживался вблизи ИПЦ. Этому способствовали высокие экспортные доходы
- В условиях санкционных ограничений снижение экспортных объемов и выручки, а также рост эксплуатационных затрат при сохранении налоговой и ценовой политики на внутреннем рынке создают серьезные риски финансовой устойчивости газовой отрасли страны

Энергетическая политика. - 2023. - № 11(190). - С. 24-41.



Внутрироссийский рынок газа – фактор конкуренции технологий


Сопоставление технологий производства электроэнергии (однопродуктовые электростанции) по показателю LCOE, коп. 1 кв. 2023 г./кВт·ч

Типы электростанций	Удельные капиталовложения, в тыс. руб./кВт (в ценах начала 2024 г.)		
	2025 г.	2050 г.	
Парогазовые ТЭС (ПГУ) 400-500 МВт	125	100	
Угольные ТЭС 300-500 МВт	170	150	
Атомная электростанция (АЭС) 1200 МВт	290	245	
Гидроэлектростанция (ГЭС) – усредненное значение	190	190	
Ветряная электростанция (ВЭС) сетевая, >1 МВт	120	96	
Солнечная электростанция (СЭС) сетевая	110	57	

Сценарии интенсификации развития экономики и энергетики России / А. А. Макаров, Ф. В. Веселов, В. А. Малахов // Проблемы прогнозирования. — 2024. — № 4(205). — С. 102-119. Цены на газ как фактор конкуренции технологий в электроэнергетике и темпов ее декарбонизации: отраслевые, межотраслевые и макроэкономические последствия / Ф. В. Веселов, В. А. Малахов, А. А. Хоршев, Т. В. Новикова // Теплоэнергетика. — 2025. — № 11. — С. 5-17.

Сопоставление технологий комбинированного производства электроэнергии и тепла, конкурирующих с газовыми ТЭЦ, по показателю LCOQ, коп. 1 кв. 2023 г./кДж

- Технологические санкции потребовали перехода к модели технологического суверенитета.
- Это отразилось на показателях доступности и стоимости современных газовых технологий (ГТУ, ПГУ) и их конкурентоспособности с традиционными паросиловыми технологиями и технологиями на других ТЭР
- Переход к массовому выпуску позволит снизить стоимость серийных изделий за счет технологического обучения и масштабов производства. Но это справедливо и для конкурирующих технологий.

Оптимизация структуры мощностей – эффективность системы, а не технологий

Оптимизация объемов установленной мощности электростанций разных типов и годовых режимов ее

Исходная версия EPOS

Технологии комбинированного производства электроэнергии и

тепла (на ТЭЦ)

Технологии однопродуктового производства тепла (кроме ТЭЦ)

Технологии передачи электроэнергии по межсистемным

электрическим связям

800

4400

5000

300

920

1500

600

Ключевым инструментом исследования способов и

250

880

1000

150

230

500

120

использования (КИУМ)		я (КИУМ)		• •
Балансы электрической энергии и мощности		Оптимизация объемов распределенной генерации	последствий трансформаці структуры является модель	развития
		Оптимизация расхода эл.энергии на собственные нужды электростанций	электроэнергетики и тепло	
Производство централизованного тепла	Оптимизация объемов отпуска тепла от ТЭЦ разного типа	Оптимизация баланса централизованного тепла с учетом ТЭЦ, котельных, безуглеродных источников (АТЭЦ, электрокотельные)	 различные темпы изменения спроса на ЭЭ и ТЭ, в том числе по территории страны различные ценовые тенденции на рынке газа и угля – основных видов топлива для ТЭС и 	
Экологические ограничения	Предельные выбросы CO ₂ от ТЭС	Предельные выбросы CO ₂ от ТЭС и котельных (общая или частные квоты)	котельных	ации и параметры мер
		Снижение углеродной интенсивности производства электроэнергии и тепла	углеродного регулі	
	Капитальные и эксплуатационные затраты электростанций и межсистемных связей		• EPOS позволяет оценить межтораслевые эффекты	
Целевая функция		Капитальные и эксплуатационные затраты котельных	для топливных отраслей – эластичность спроса у крупнейших внутренних потребителей	
		Углеродные платежи, стоимость зеленых сертификатов, льготные кредиты и проч.	,,	
Горизонт прогноза	2050 год	2070 год		
	Энерготехнологии	Состояние	Количество агрегированных энергообъектов	Количество, описывающих их переменных
Гехнологии однопродуктового производства электроэнергии (кроме ТЭЦ)		Существующие	220	450
		Модернизация и техническое перевооружение	110	440
		Новые	1050	4200

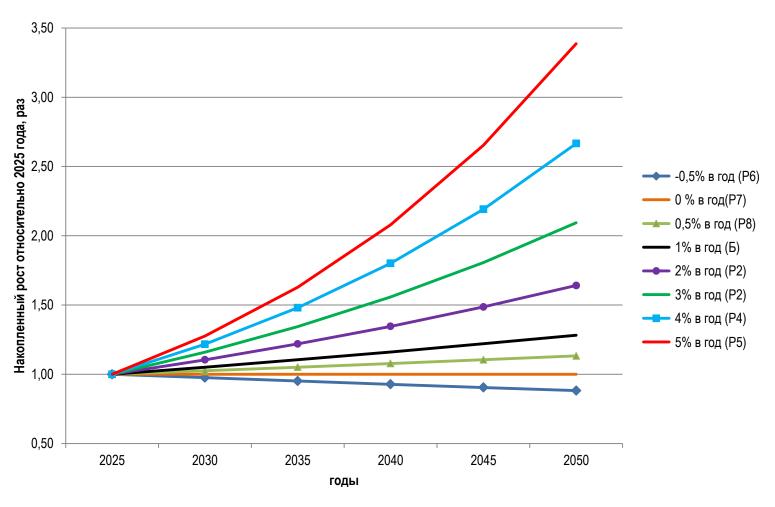
Существующие

Существующие

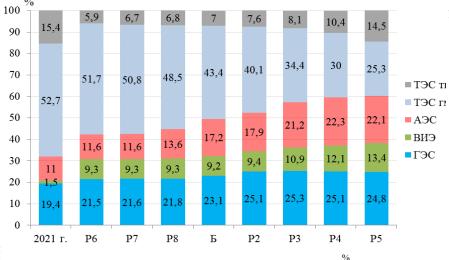
Новые

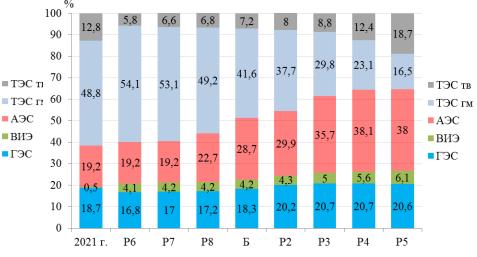
Новые

Текущая версия EPOS

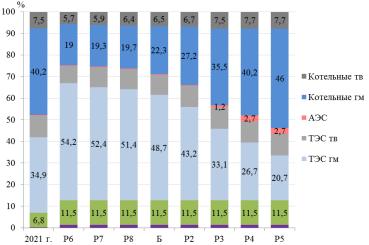

Модернизация и техническое перевооружение

Модернизация и техническое перевооружение


Показатели сценариев изменения цены на газ в России (различные годовые темпы роста)

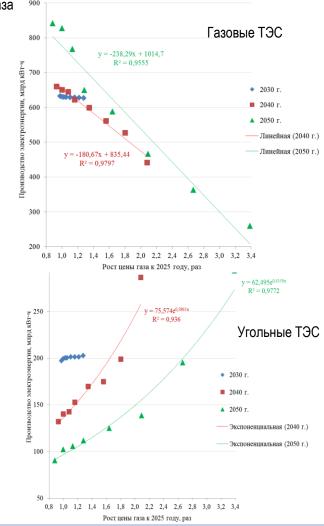

ИН ДИ

Влияние цен на газ на изменение производственной структуры


Изменения в структуре установленной мощности электростанций в 2050 году при варьировании темпов роста цены газа (порядок вариантов по увеличению темпов роста цены)

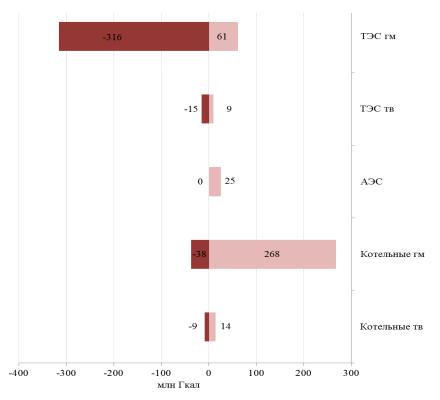
Изменения в структуре производства электроэнергии в 2050 году при варьировании темпов роста цены газа (порядок вариантов по увеличению темпов роста цены)

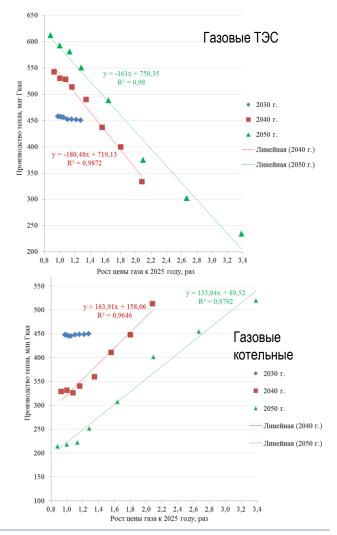
Изменения в структуре производства централизованного тепла в 2050 году при варьировании темпов роста цены газа (порядок вариантов по увеличению темпов роста цены)



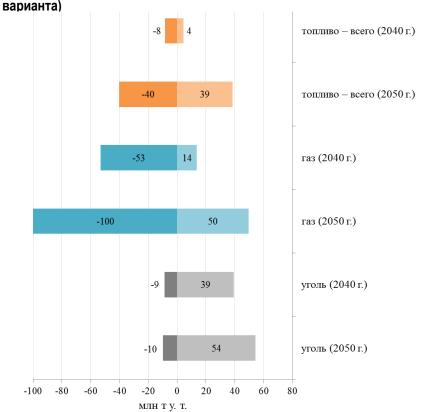
Влияние цен на газ на изменение производственной структуры

Диапазоны изменения производства электроэнергии различными типами электростанций в целом по России при варьировании темпов роста цен газа (относительно «базового» варианта), 2050 г.

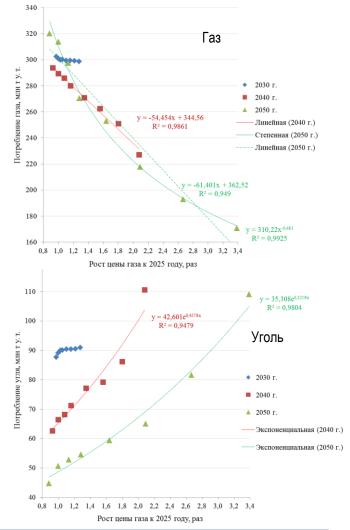

Зависимости изменения объемов производства электроэнергии газовыми и угольными ТЭС от вариантов изменения цены газа 900



Диапазоны изменения производства централизованного тепла различными источниками в целом по России при варьировании темпов роста цен газа (относительно «базового» варианта), 2050 г.

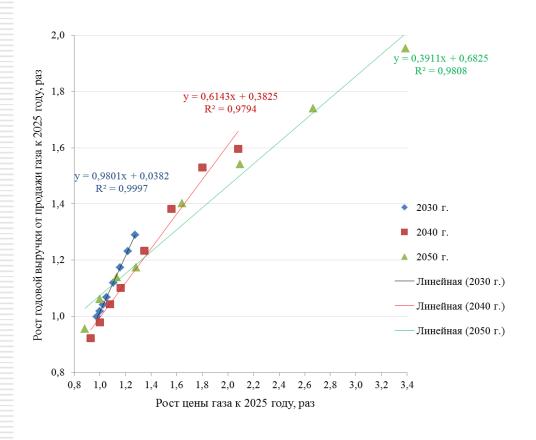

Зависимости изменения объемов производства тепла газовыми и котельными от вариантов изменения цены газа

Влияние цен на газ на изменение спроса на топливо


Диапазоны изменения потребления топлива на ТЭС и котельных при варьировании темпов роста цены газа (относительно «базового» ценового размацта)

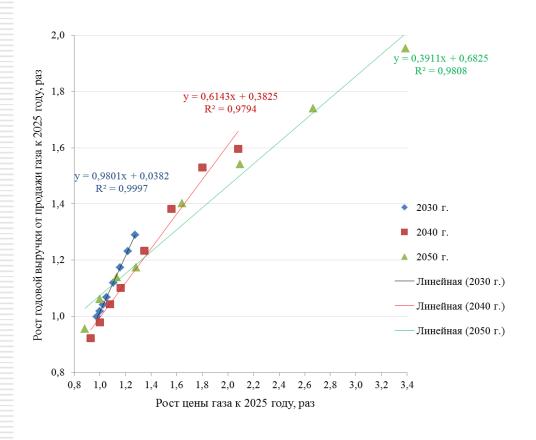
Спрос на газ ТЭС и котельных в 2050 г. 170-320 млн т у.т. (в 2021 г. 296) Спрос на уголь ТЭС и котельных в 2050 г. 45-109 млн т у.т. (в 2021 г. 73)

Цены на газ как фактор конкуренции технологий в электроэнергетике и темпов ее декарбонизации: отраслевые, межотраслевые и макроэкономические последствия / Ф. В. Веселов, В. А. Малахов, А. А. Хоршев, Т. В. Новикова // Теплоэнергетика. – 2025. – № 11. – С. 5-17.


Зависимости изменения спроса на газ ТЭС и котельными от вариантов изменения его цены

Влияние цен на газ на изменение спроса на топливо

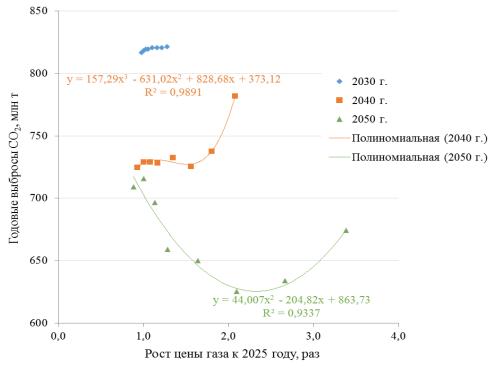
Зависимости изменения выручки от продажи газа на ТЭС и котельные от вариантов изменения цены газа



- изменение годовой выручки от продажи (относительно 2025 года) газа определяется произведением накопленных темпов изменения цены газа и относительных годового объема его потребления
- выручка от продажи газа линейно меняется по мере роста его цены, однако со временем эластичность этой зависимости снижается.
- существенное снижение объемов спроса при высоких темпах роста цены газа будет сдерживать рост выручки даже при самых высоких темпах роста цены газа ее объем вырастет не более, чем на 60 % к 2040 году и лишь вдвое к 2050 году
- полученные результаты показывают высокую чувствительность крупнейшего внутреннего потребителя газа (ТЭС и котельных) к изменению ценовой политики на внутреннем рынке поставок газа и важность учета эластичности спроса при оптимизации производственнофинансовых планов газовой отрасли

Влияние цен на газ на изменение спроса на топливо

Зависимости изменения выручки от продажи газа на ТЭС и котельные от вариантов изменения цены газа



- изменение годовой выручки от продажи (относительно 2025 года) газа определяется произведением накопленных темпов изменения цены газа и относительных годового объема его потребления
- выручка от продажи газа линейно меняется по мере роста его цены, однако со временем эластичность этой зависимости снижается.
- существенное снижение объемов спроса при высоких темпах роста цены газа будет сдерживать рост выручки даже при самых высоких темпах роста цены газа ее объем вырастет не более, чем на 60 % к 2040 году и лишь вдвое к 2050 году
- полученные результаты показывают высокую чувствительность крупнейшего внутреннего потребителя газа (ТЭС и котельных) к изменению ценовой политики на внутреннем рынке поставок газа и важность учета эластичности спроса при оптимизации производственнофинансовых планов газовой отрасли

Влияние цен на газ на выбросы парниковых газов от ТЭС и котельных

Статистические зависимости годовой эмиссии CO2 на ТЭС и котельных от вариантов изменения цены газа

Цены на газ как фактор конкуренции технологий в электроэнергетике и темпов ее декарбонизации: отраслевые, межотраслевые и макроэкономические последствия / Ф. В. Веселов, В. А. Малахов, А. А. Хоршев, Т. В. Новикова // Теплоэнергетика. – 2025. – № 11. – С. 5-17.

- Изменения в объемах потребления газа и угля под влиянием ценовой политики на рынке топлива отразятся и на объемах выбросов CO₂ от электростанций и котельных.
- В 2030 году их объем практически не меняется по вариантам ценовой политики.
- К 2040 году годовые выбросы слабо меняются при низком и умеренном росте цен газа, но заметно увеличиваются при высоких темпах роста цен газа из-за наращивания потребления угля.
- К 2050 году вклад безуглеродных электростанций становится еще более выраженным, а объем годовых выбросов меняется нелинейно относительно изменения цены газа:
 - при низких темпах роста на выбросы влияет максимальный объем потребления газа;
 - при увеличении темпов роста цены газа выбросы снижаются под влиянием роста безуглеродных источников, однако из-за их ограниченного роста при еще более высоких темпах роста цены газа увеличиваются и выбросы из-за вовлечения все больших объемов угля
- Нелинейность в изменении выбросов CO₂ показывает, что цены газа, влияя на условия межтопливной конкуренции, могут способствовать декарбонизации производства электроэнергии и теплоснабжения, стимулируя переход к безуглеродным источникам.
- Наибольший результат достигается при годовых темпах роста цены газа около 2 п. п. Однако эффект снижения выбросов отложен по времени и ограничен даже на горизонте 2050 года

Итоговые выводы

- Газ остается опорным энергетическим ресурсом для экономики страны, обеспечивает около 45% производимой электроэнергии и основной объем централизованного тепла. В свою очередь, ТЭС и котельные являются крупнейшими внутренними потребителями газа
- Внутренние цены на газ остаются существенно более низкими, чем на экспортных рынках. До последнего времени регулирование цен на газ сдерживало их рост около ИПЦ
- Резкое изменение внешних факторов делает необходимым корректировку налоговой и ценовой политики в газовой отрасли, с более высокими темпами роста цен для российских потребителей
- Растущие цены на газ меняют условия межтопливной конкуренции электроэнергетика адаптируется к росту топливных затрат через более активное развитие других технологий
 - В структуре производства электроэнергии газ замещается АЭС и угольными ТЭС, в меньшей степени ГЭС и ВИЭ
 - В структуре производства тепла газ остается основным ресурсом, но в рамках раздельной схемы с негазовыми электростанциями
- При росте цен на газ от 1% до 5% в год спрос на газ ТЭС и котельных в 2050 г. составит от 270 до 170 млн т у.т. (в 2021 г. 296). При стагнации цен он может достигнуть 320 млн т у.т.
- Сокращение спроса при удорожании газа ограничивает рост выручки от его продажи утроение цены к 2050 г. (без учета инфляции) позволит лишь вдвое увеличить выручку поставщиков газа
- Рост цены на газ оказывает ограниченный эффект декарбонизации: как по масштабам сокращения выбросов, так и по предельным темпам удорожания топлива.

Институт энергетических исследований РАН

www.eriras.ru info@eriras.ru, erifedor@mail.ru

Исследование выполнено в ИНЭИ РАН при поддержке

Минобрнауки России

- проект № FFGW-2025-0003 «Актуализация методов разработки и механизмов реализации стратегии развития энергетики России применительно к новым внешним условиям и требованиям национальной системы стратегического планирования»
- проект №FFGW-2025-0001 «Анализ устойчивости мировой энергосистемы в условиях меняющихся приоритетов, последствий для глобальной торговли энергоресурсами и участия в ней России»

Российского научного фонда

- гранта Российского научного фонда № 21-79-30013-П, https://rscf.ru/project/21-79-30013/

Спасибо за внимание!