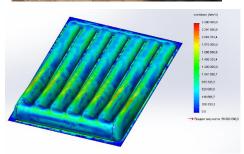


Исследования в интересах создания массивов исходных данных для проектирования сетевых и автономных установок с ВИЭ и накопителями

Тарасенко А.Б.,


ФГБУН «Объединённый институт высоких температур РАН», Лаборатория Инженерной Теплофизики, Группа ВИЭ

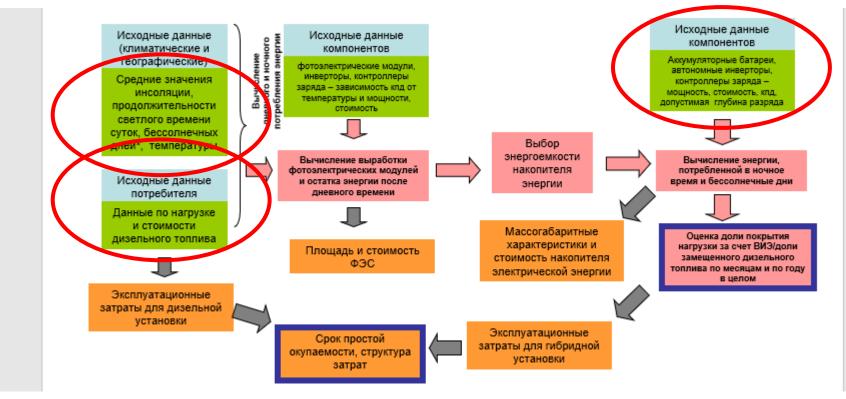

оценка потенциала возобновляемых энергоресурсов

-математическое моделирование различных видов энергоустановок, использующих солнечную и ветровую энергию



-разработка технических решений по созданию фотоэлектрических систем с современными накопителями электрической энергии, а также по созданию солнечных систем для горячего водоснабжения и отопления

- Исследования ключевых компонентов ЭУ ВИЭ



Постановка задачи

Пример алгоритма расчёта состава гибридной энергоустановки с ВИЭ

Основная цель проводимых работ — сбор актуальных исходных данных для уточнения результатов прогнозирования выработки энергии и технико-экономических показателей энергоустановок.

Метеорологические данные:

- Спутниковые базы;
- Наземный мониторинг;

Особенности местности – затенение, обмерзание, оснежнение!

Данные ключевых компонентов:

- Результаты заводских испытаний производителем;
- Результаты собственных испытаний;

Режимы эксплуатации!

Данные нагрузки потребителя:

- ???

Фактические алгоритмы управления установкой (ПО контроллеров/инверторов:

???

Решаемые задачи:

- высокоточный мониторинг приходящего солнечного излучения и иных актинометрических характеристик для разработки и тестирования различных методов оценки солнечных ресурсов;
- оценка солнечных ресурсов на территории для потенциального сооружения солнечной установки или станции и получения информации, необходимой для их оптимального проектирования и эксплуатации (в том числе для долгосрочного прогнозирования производительности станции);
- оценка текущей работоспособности и эффективности солнечной установки или станции, а также сбора данных, необходимых для краткосрочного прогнозирования производительности энергогенерирующего объекта

Rsh1 SPV1 A1 ~ U1 A2 M1 =	
Rsh2 SPV2 A3 — U2 A4 M4 M4 M3 Rd2 XT2	
Rsh3 SPV3 A4 = U3 A5 M6 L2 X12	
M7 M8 M9 M10 NBT M11 M12	
П1 П2 П3 П4 ТС1	_

	№ п/п	Элементы стенда краткосрочного	Количе	Характеристика/марка
<u> </u>		мониторинга	СТВО	оборудования
1		Объект і	испытаний	
стенда	1.	Фотоэлектрические модули (ФЭМ)	3	DAH_54X16/DG(BW)-440
OB	2	Микроинверторы	3	Foshan Shunrongpa
Ħ		Измерительно	е оборудо	вание
DHC Ta	2	Термоэлектрические пиранометры	4	RD-TSRS-04
компонентов горинга	3	Трехчашечный анемометр	1	CALT YGC-FS
чень компон Мониторинга	4	Измеритель температуры и влажности	1	ОВЕН ПВТ110-H4.RS
H H		воздуха	1	OBER HBT110-R4.K5
перечень мони	5	Измеритель температуры ФЭМ	2	PT100 4×30 mm
آبا چرا		Устройства для регистраци	и и архиви	рования сигналов
	_	Модуль регистрации токов, напряжений	0	AUG ODGU MAD440 224 24
ž	6	и вольтамперных характеристик модулей	9	АЦП ОВЕН МВ110.224-2А
краткии	7	Модуль регистрации температур	1	АЦП ОВЕН МВ110.224-2А
<u>Z</u>		Модуль регистрации параметров	2	AUG ORGU M2440 224 484
	8	электросети	3	АЦП ОВЕН МЭ110-224.1М
	9	Блок архивирования и передачи данных	1	Архиватор-регистратор ОВЕН МСД-200

Школа молодых ученых – 2025 «Системные исследования энергетических технологий», 25-26.10.2025 г, ИНЭИ РАН

Характеристики окружающей среды и работы ФЭМ, измеряемые на стенде мониторинга

Измеряемая характеристика	Единица измерения	Цель мониторинга
Факторы окру	жающей среды,	, определяющие производительность ФЭМ
Суммарное солнечное излучение в плоскости ФЭМ (фронт)	Вт/м²	Расчет производительности модуля
Суммарное солнечное излучение на тыльной поверхности ФЭМ	Вт/м ²	гасчет производительности модули
Суммарное солнечное излучение в горизонтальной плоскости	Вт/м²	Сопоставление с данными о солнечной радиации из
Рассеянное солнечное излучение в горизонтальной плоскости	Вт/м²	спутниковых баз данных и реанализов
Температура ФЭМ	°C	Расчет производительности модуля
Температура окружающего воздуха	°C	1. Определение потерь мощности в связи с нагревом ФЭМ 2. Расчет производительности модуля
Скорость ветра	м/с	1. Определение потерь мощности в связи с нагревом ФЭМ 2. Расчет производительности модуля
Хара	ктеристики раб	оты фотоэлектрических модулей
Напряжение на входе инвертора (DC)	В	1. Фактическая производительность ФЭМ (до инвертора).
Ток на инверторе (DC)	А	2. Оценка точности расчетной методики
Выходное напряжение (АС)	В	Фактическая производительность ФЭМ (после инвертора)
Выходной ток (АС)	А	. 2 ISSUE INPOSISSOATION OF THE PROPERTY

Рассчётные характеристики на стенде мониторинга

Характеристика	Единицы измерени я	Наличие в модели
Электрическая энергия и мощность		
Номинальная мощность ФЭМ (постоянный ток)	Вт	+
Номинальная мощность ФЭМ (переменный ток)	Вт	-
Электрическая энергия на выходе ФЭМ (постоянный ток)	кВтч	+
Электрическая энергия на выходе ФЭМ (переменный ток*)	кВтч	-
Производительность и потери энергии		
Удельная энергия на выходе ФЭМ (отношение выработанной энергии к	Y_A/Y_f	+ (только
мощности ФЭМ по постоянному Ү _А и переменному Ү _f току)	кВтч/кВт	Y _A)
Удельная освещенность (отношение суммы приходящего излучения в плоскости модуля (кВтч/м²) к потоку излучения (кВт/м²) в условиях STC; рассчитывается с учетом одно/двухсторонности ФЭМ)	Ү _г , кВтч/кВт	+
Потери энергии, связанные с потерями в проводке и распределительных коробках до измерения постоянного тока, температурными эффектами, загрязнением ФЭМ и т.д., и определяются как (Y _A – Y _r)	кВтч/кВт	+
Эффективность		
Эффективность ФЭМ (отношение мощности модуля (постоянный ток) к произведению плотности потока излучения при STC (Вт) на площадь модуля)	безразмер ная	+
Средняя эффективность ФЭМ (отношение выработанной модулем за заданный период времени энергии к сумме за этот период приходящего солнечного излучения в плоскости модуля, умноженной на площадь модуля)	безразмер ная	+
Системная эффективность ФЭМ (отношения выработанной энергии на выходе (переменный ток) за заданный период к сумме за этот период приходящего солнечного излучения в плоскости модуля, умноженной на площадь модуля)	безразмер ная	-

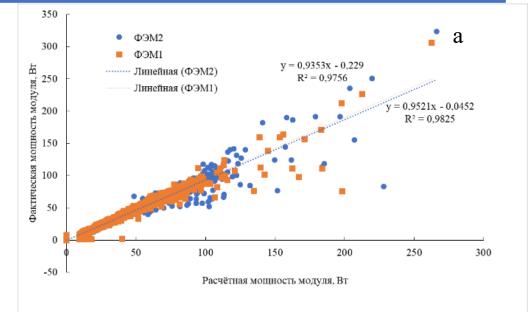
Для определения зависимости напряжений и токов ФЭМ с известными паспортными параметрами от температуры окружающей среды T и инсоляции A использовали так называемую модель NOCT. Согласно этому подходу, мощность фотоэлектрического модуля при работе с устройством, обеспечивающим её отбор в режиме экстремального регулирования (в данном случае сетевым микроинвертором), определяется как:

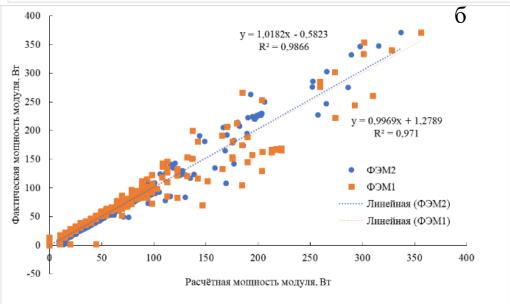
$$P_{mpp} = P_{STC} \times A \times \left[1 + \left(\frac{\gamma}{100}\right) \times (T_{mod} - 25)\right]$$

Здесь: у- температурный коэффициент максимальной мощности модуля, а P _{STC} - мощность модуля, определенная при стандартных условиях тестирования. Температура модуля

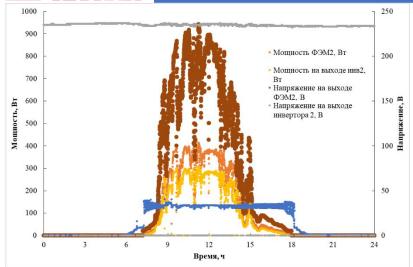
$$T_{mod} = T + \frac{A}{800} \times (T_{noct} - 20),$$

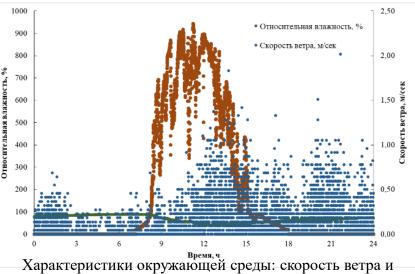
где T_{noct} — установившаяся температура фотоэлектрических преобразователей в модуле без нагрузки при 800 Вт/м² и плюс 25°С.


Таким образом, для каждого ФЭМ были получены суточные ряды его температур и мощности на 10-секундных интервалах.


IEC 60891:Procedure 1, in Govindasamy Tamizh, Mani Karen Paghasian, Kuitche Joseph, Meena Gupta Vemula, Ganesh Sivasubramanian, Photovoltaic Module Power Rating IEC 61853-1 Standard: A Study Under Natural Sunlight // Arizona State University Photovoltaic Reliability Laboratory (PRL) March 2011, www.solarabcs.org/ratingper61853

Перечень и фактические значения измеряемых и рассчитываемых характеристики фотоэлектрических модулей в составе стенда мониторинга


Характеристика	ФЭМ 1	ФЭМ 2				
Измеряемые характеристики окружающей среды						
Суточная сумма солнечного излучения в	653	711				
плоскости модулей, Втч/(м²-сутки)	053	/11				
Суточная сумма солнечного излучения,						
горизонт, Втч/(м²∙сутки)						
Суточная сумма рассеянного солнечного						
излучения, Втч/(м²-сутки)						
Максимальная температура модуля, °С	12.0	11,8				
Средняя температура модуля, °C	0.0	0,0				
Максимальная температура окружающей	9.	5				
среды, °С	3.					
Средняя температура окружающей	6.	8				
среды, °С						
Средняя относительная влажность, %	90	-				
Средняя скорость ветра, м/сек	0.					
	емые характеристики модулей по ГОСТ Р МЭН					
Номинальная мощность ФЭМ, Вт	440	440				
Номинальная мощность инвертора, Вт	700	700				
Электрическая энергия на выходе ФЭМ	297	330				
(постоянный ток), Втч						
Электрическая энергия на выходе	221	221				
системы (переменный ток), Втч						
Среднее количество часов использования мощности ФЭМ	0.68	0.75				
Эталонное количество часов						
использования мощности ФЭМ	0.65	0.65				
Удельная энергия на выходе ФЭМ						
(переменный ток), Втч/Вт	0.50	0.50				
Удельная освещенность, Втч/Вт						
(Развертка во времени)	0.65	0.65				
Потери энергии в ФЭМ, Втч						
Потери в системе для ФЭМ, Втч	77	110				
Номинальная эффективность ФЭМ (Array	0.22	0.22				
efficiency DC)	0.23	0.23				
Средняя эффективность ФЭМ	0.23	0.26				
(генерализация – сутки)	0.23	0.26				
Эффективность по переменному току	0.17	0.17				
Эффективность системы (BOS efficiency)	0.74	0.67				
Часовые суммы выработки модулей, Втч						
Удельная энергия на выходе ФЭМ (DC),						
Втч/Вт	По каждому часу суток					
Эффективность ФЭМ						
киум фэм						



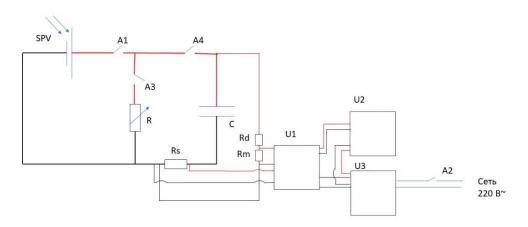
сумма солнечного излучения в плоскости модулей 700 Втч, максимальный поток суточная 770 Втч, максимальный поток излучения 495 Вт/м 2 (30.10.2025) Результат сравнения расчетной и фактической мощности модулей: а

Мощность и напряжение Φ ЭМ 2 в звене постоянного и переменного тока (02.10.2025 г.) Шаг измерений – 10 с

 Характеристики окружающей среды: скорость ветра и относительная влажность воздуха

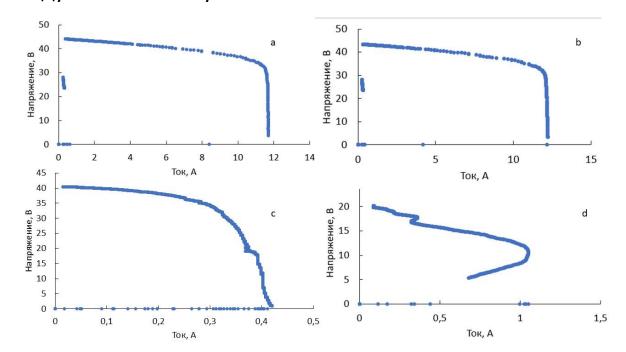
на уровне фотоэлектрического модуля (02.10.2025 г.). Шаг

	наклон	Инсоляция горизонт правый,	Инсоляция	Инсоляция рассеянная,	Ч
Час			тыл, Втч/м2		
1		-			
2	0	0	0		
3	0	0	0		
4	0	0	0	0	
5	0	0	0		
6	0	0	0	0	
7	0	0	0	0	
8	0	0	0	0	
9	0	0	0	0	
10	0	2	0	0	
11	10	23	0	4	
12	26	28	0	22	
13	27	29	0	20	
14	15	20	0		
15	10	12	0		
16	0	0	0	0	
17		0	0		
18					
19		0	0		
20					
21					
22					
23					
24	0	0	0	0	


	Час суток	ФЭМ3	ФЭМ2	ФЭМ1
	1	0	0	(
,	2	0	0	(
0	3	0	0	
0	4	0	0	
0	5	0	0	
0	6	0	0	C
0	7	0	0	
0	8	0	0	C
0	9	0	0	C
0	10	3	3	C
0	11	6	6	C
0	12	8	7	C
4	13	9	8	C
2	14	6	6	(
0	15	4	4	(
9	16	2	2	(
0	17	0	0	(
0	18	0	0	C
0	19	0	0	C
0	20	0	0	C
0	21	0	0	
0	22	0	0	C
0	23	0	0	C
0	24	0	0	C
\cap				

Часовые суммы солнечной радиации

Часовые суммы выработки модулей



Блок регистрации ВАХ фотоэлектрического модуля в полевых условиях

Электрическая схема измерительной установки для регистрации ВАХ фотоэлектрического модуля

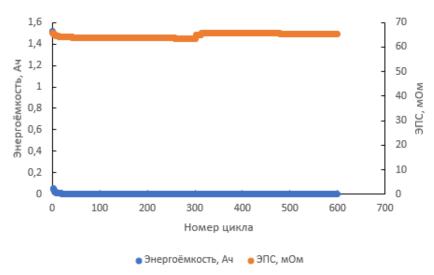
NºNº	<mark>Поз.</mark> обозначение	Наименование
1	SPV	Фотоэлектрический испытуемый модуль
2	A1, A3, A4	Автоматический выключатель ВА 63 С20
3	R	Балластное сопротивление
4	С	Суперконденсаторная батарея МСК 27-52
5	Rs	Шунт токовый ШС 20-75-0.5
6	Rd	Сопротивление С2-23 номиналом 22 кОм
7	Rm	Сопротивление С2-23 номиналом 430 Ом
8	A2	Автоматический выключатель ВА 63 В6
9	U1	Аналого-цифровой преобразователь ОВЕН МВ110-
		224.2A
10	U2	Архиватор ОВЕН МСД-200
11	U3	Блок питания ОВЕН БП-60-24Д2

Эксперимент	a	b	С	d
Время регистрации ВАХ, мин.	3.5	4	74	28
Уровень солнечной радиации, Вт/м²	925	917	41-45	53-81
Температура окружающей среды, °С	+8	+10	+7	+1
Напряжение холостого хода модуля расчетное, В	47.1	47.2	52.2	52.1
Ток короткого замыкания модуля расчетный, А	10.7	10.7	0.38	0.62
Максимальная мощность модуля расчетная, Вт	394	388	19.5	32
Напряжение холостого хода модуля фактическое, В	44.1	43.4	52	-
Ток короткого замыкания модуля фактический, А		12.2	0.48	-
Максимальная мощность модуля фактическая, Вт	381	388	22	-

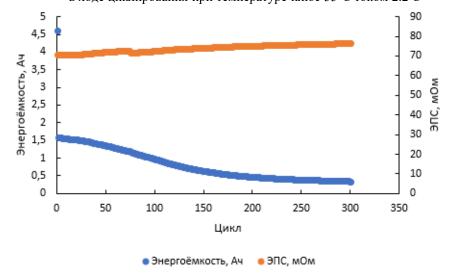
Объект испытаний

Проведение испытаний

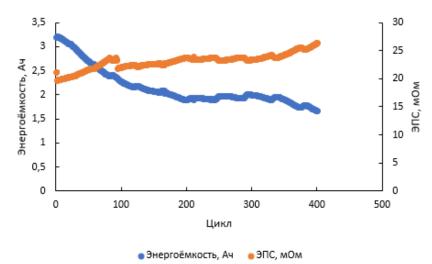
Возможные механизмы деградации (по литературным данным)


- Осаждение вторичного слоя твёрдого электролита (SEI) на аноде [1-3];
- Разложение электролита с выделением твёрдых (внутри пор сепаратора) и газообразных продуктов деформация сборки из электродов и сепаратора [3];
- Растрескивание электродов на микроуровне за счёт механических напряжений [4,5];
- Осаждение металлического лития на аноде [2,6];
- Коррозия токовых коллекторов [7];
- Растворение переходных металлов из состава катода электрода с последующим переосаждением на аноде [8].

Замедление деградации может быть вызвано:


- Повторным растворением высадившихся компонентов SEI в электролите при повышенных температурах [9];

Заращиванием микротрещин на электродах и высадившегося металлического лития вторичным слоем SEI при циклировании в более благоприятных условиях [6].


- L. Jian-liang CHENG, Xin-hai LI, Zhi-xing WANG, Hua-jun GUO, Mechanism for capacity fading of 18650 cylindrical lithium ion batteries// Trans. Nonferrous Met. Soc. China 27(2017), pp. 1602–1607;
- 2. Xiao-Guang Yang, Yongjun Leng, Guangsheng Zhang, Shanhai Ge, Chao-Yang Wang, Modeling of lithium plating induced aging of lithium-ion batteries: Transition from linear to nonlinear aging// Journal of Power Sources 360 (2017), pp. 28-40;
- 3. Han Wang, Jay F. Whitacre, Inhomogeneous aging of cathode materials in commercial 18650 lithium ion battery cells//Journal of Energy Storage 35(2021), 102244;
- 4. Xuemin Li, Andrew M. Colclasure, Donal P. Finegan, Dongsheng Ren, Ying Shi, Xuning Feng, Lei Cao, Yuan Yang, Kandler Smith, Degradation mechanisms of high capacity 18650 cells containing Si-graphite anode and nickel-rich NMC cathode//Electrochimica Acta 297 (2019), pp. 1109-1120;
- 5. C.R. Birkl, M.R. Roberts, E. McTurk, P.G. Bruce, D.A. Howey, Degradation diagnostics for lithium ion cells//J. Power Sources 341 (2017), pp. 373–386;
- 6. C. von Lüders, J. Keil, M. Webersberger, A. Jossen, Modeling of lithium plating and lithium stripping in lithium-ion batteries//J. Power Sources 414 (2019), pp. 41–47;
- 7. L. Guo, D.B. Thornton, M.A. Koronfel, I.E.L. Stephens, M.P. Ryan, Degradation in lithium ion battery current collectors//J. Phys.: Energy 3 (3) (2021) 032015;
- 3. J.P. Pender, G. Jha, D.H. Youn, J.M. Ziegler, I. Andoni, E.J. Choi, A. Heller, B.S. Dunn, P.S. Weiss, R.M. Penner, C.B. Mullins, Electrode degradation in lithium ion batteries//ACS Nano 14 (2) (2020), pp. 1243–1295;
- 9. Nils Collath, Benedikt Tepe, Stefan Englberger, Andreas Jossen, Holger Hesse, Aging aware operation of lithium-ion battery energy storage systems: A review//Journal of Energy Storage 55 (2022) 105634;

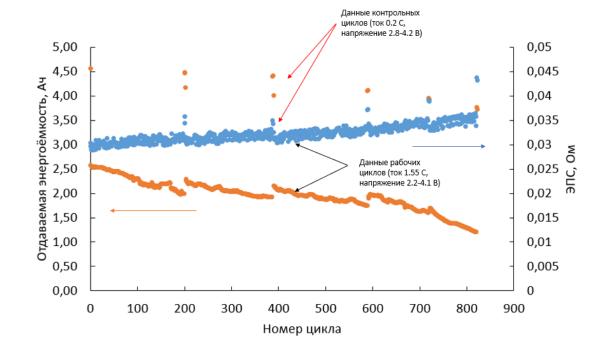
Параметры аккумулятора АО «Энергия» (г. Елец) 2100, заводской номер 230275 в ходе циклирования при температуре плюс 55°C током 2.2 С

Параметры аккумулятора АО «Энергия» (г. Елец) 2100, заводской номер 230275 в ходе циклирования при температуре плюс 55°C током 1.55 С в диапазоне 2.4...4.2 В

Параметры аккумулятора АО «Энергия» (г. Елец) 2100, заводской номер 230275 в ходе циклирования при комнатной температуре током 1.55 С в диапазоне 2.4...4.2 В

Результаты испытаний аккумулятора АО «Энергия» типоразмера 21700, заводской номер 230275

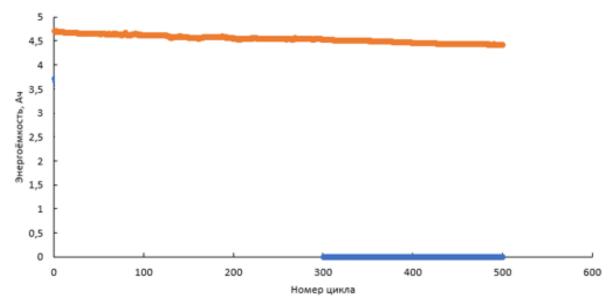
Режим	Энергоемкость на входном контроле, Ач	Среднее ЭПС на входном контроле, мОм	Энергоемкость на выходном контроле, Ач	Среднее ЭПС на выходном контроле, мОм
10 месяцев хранения в заряженном состоянии	4.53	33	4.57	60
217 циклов при плюс 55°C на 2.2 C, 2.84.1 В	4.57	60	4.6	63.9
600 циклов при плюс 55°C на 2.2 С, 2.84.1 В	4.6	63.9	4.59	70
300 циклов при плюс 55°C на 1.55 С, 2.44.2 В	4.59	70	4.25	76.6
400 циклов при комнатной температуре на 1.55 С, 2.44.2 В	4.25	76.6	3.43	30



Результаты испытаний аккумулятора АО «Энергия» 21700, заводской номер 230813

Режим	Энергоемк ость на входном контроле, Ач	Среднее ЭПС на входном контроле, мОм	Энергоем кость на выходном контроле, Ач	Среднее ЭПС на выходном контроле, мОм
15 месяцев хранения в заряженном состоянии	4.69	34	4.63	31
480 циклов при плюс 55°C на 1.55 С, 2.44.1 В	4.63	31	4.3	37
На рабочем токе 1.55 С	2.66	30	1.64	31

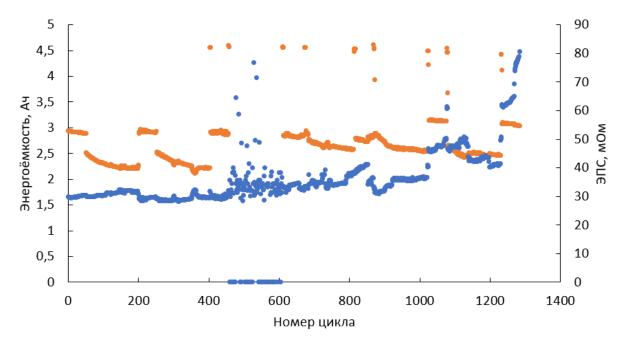
Результаты испытаний аккумулятора АО «Энергия» 21700, заводской номер 230880


Режим	Энергоемк ость на входном контроле, Ач	Среднее ЭПС на входном контроле, мОм	Энергоем кость на выходно м контроле, Ач	Среднее ЭПС на выходно м контроле, мОм	Достигнута я скорость деградаци и, %/цикл
15 месяцев хранения в заряженном состоянии	4.67	38	4.55	36	
200 циклов при комнатной температуре на 1.55 С, 2.24.1 В	4.55	36	4.48	34	0.01
На рабочем токе 1.55 С	2.58	30	2	31	0.1
200 циклов при комнатной температуре на 1.55 С, 2.24.1 В	4.48	34	4.14	34	0.04
На рабочем токе 1.55 С	2.35	32	1.95	31	0.09
200 циклов при комнатной температуре на 1.55 С, 2.24.1 В	4.14	34	4.12	37	0
На рабочем токе 1.55 С	2.16	31	1.75	33	0.05
200 циклов при комнатной температуре на 1.55 С, 2.24.1 В	4.12	37	3.92	39	0.02
На рабочем токе 1.55 С	1.95	34	1.61	34	0.03
100 циклов при комнатной температуре на 1.55 С, 2.24.1 В	3.92	39	3.7	43	0.04
На рабочем токе 1.55 С	1.7	34	1.2	36	0.15

Результаты испытаний аккумулятора АО «Энергия» 21700, заводской номер 230293

Режим	Энергоемко сть на входном контроле, Ач	Среднее ЭПС на входном контроле, мОм	Энергоем кость на выходном контроле, Ач	Среднее ЭПС на выходном контроле, мОм	Достигнута я скорость деградации , %/цикл
16 месяцев хранения в заряженном состоянии	4.7	37	4.65	29	
118 циклов при комнатной температуре на 1.33 С, 2.04.1 В	4.65	29	4.56	32	0.01
На рабочем токе 1.33 С	2.9	29	2.66	33	0
200 циклов при комнатной температуре на 1.33 С, 2.04.1 В	4.56	32	4.43	34	0.01
На рабочем токе 1.55 С	2.6	28	2.05	29	0.11
200 циклов при комнатной температуре на 1.33 С, 2.24.1 В	4.43	34	4.1	37	0.01
На рабочем токе 1.33 С	2.4	27	1.7	32	0.15
100 циклов при комнатной температуре на 1.33 С, 2.24.1 В	4.1	37	3.45	43	0.06
На рабочем токе 1.33 С	1.9	29	1.04	35	0.23

Результаты ресурсных испытаний аккумулятора АО «Энергия» 21700, заводской номер 1142 (2023 г.)


Нужно также отметить, что в режиме ускоренного старения скорость деградации не является линейной в зависимости от числа циклов. Её максимум приходится на диапазон с 300 по 600 цикл, после чего она снова снижается. Физически это свидетельствует о различных процессах, доминирующих на различных этапах деградации. Практическая ценность полученных результатов пока ограничена малым количеством циклов и низким уровнем деградации, достигнутым в нормальных условиях испытаний (относительная сила тока -0.2 С при температуре, близкой к комнатной)

Испытания аккумуляторов в условиях, характерных для работы фотоэлектрических станций

Методика испытаний

50 циклов глубокого разряда (для LiC₆|LiNMC аккумулятора АО «Энергия» типоразмера 27100 — от 2.8 до 4.0 В током 1.8 А, т.е. 0.4 С) чередуются со 150 циклами малой глубины разряда (от 3.1 до 4.2 В тем же током). Глубокие циклы соответствуют зимнему периоду, циклы малой глубины — летнему. [Шюмц М. Презентация компании ВАЕ Batterien GmbH // Международная научно-практическая конференция «Возобновляемая энергетика в изолированных системах Дальнего Востока России», 28 июня 2013 г., Якутск.]. Между сериями проводится выходной контроль на токе 0.2 С.

Следует отметить благотворное влияние перерывов в ходе циклирования, вызванных как кратковременняй ир от обрудования во время испытаний, так и переходами от одного режима к другому. Такое влияние может быть обусловлено релаксационными процессами на электродах или в составе электролита — выходом с поверхности электродов газообразных продуктов реакций или растворением образовавшихся на электродах твёрдых осадков. В среднем за цикл аккумулятор отдавал 59% своей номинальной энергоёмкости или 2.62 Ач. Количество эквивалентных циклов, оцененное, как в [Wikner E. Lithium-ion Battery Aging: Battery Lifetime Testing and Physics-based Modeling for Electric Vehicle Application. — Thesis for the degree of licentiate of engineering. Chalmers university of technology. Göteborg. Sweden. 2017.], составило 600. Данные последнего входного контроля (после 6 серий по 50 циклов глубокого разряда и 150 циклов малой глубины разряда) показали снижение энергоёмкости аккумулятора на 4% от номинальной.

Полученные результаты позволяют прогнозировать срок службы такого аккумулятора в составе ФЭС не менее 6 лет.

Испытания натрий-ионного аккумулятора

Аккумулятор натрия 18650, 3 в, 1300 мА/ч 3V 1300mAh-20C 1PCS, 3V, China

Итого:

Способ оплаты

SelianEnergy Lifepo4 Battery Store

Объект испытаний

Производителем заявлены следующие характеристики:

HAKADI 18650-3V 1300-20C

Nominal voltage: 3.0V

Standard capacity: 1300mah

Min Capacity: 1220mAh

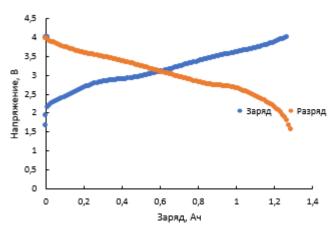
Weight: 40±2g

Size: 18*65mm

Charge voltage: 4.0V

Discharge cut-off voltage: 1.5±0.05V

Internal resistance: 20mOM

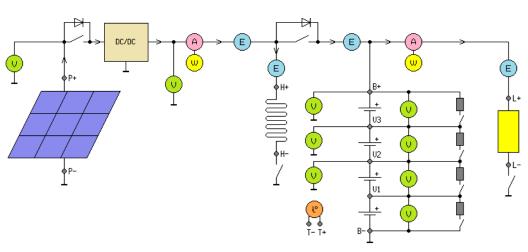

Standard charging current: 0.5C

Standard discharge current: 0.5C

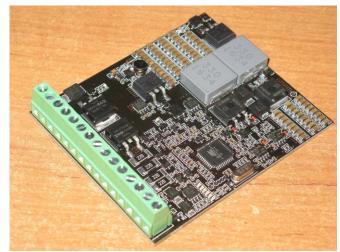
Max. Charge Current: 3C

Max. Discharge Current: 20C

Temperature of discharge: -30~60.


Зарядная и разрядная кривые при токе 0.65 А.

энергоёмкость составила 1.29 Ач. Циклирование в диапазоне (2.5-3.7) В тем же током было вызвано необходимостью оценить использование натрий-ионных аккумуляторов данной марки совместно с наиболее распространенными на рынке согласующими преобразователями, работающими в диапазоне напряжений (10.5-14.6) В для 12 В аккумуляторной батареи. В результате выявлено падение отдаваемой энергоёмкости до 0.9 Ач, то есть более чем на 25%, что свидетельствует о необходимости модернизации существующей силовой электроники для работы с натрий-ионными батареями. Вместе с тем, в данном диапазоне напряжений зависимость напряжения от заряда вырождается в линейную функцию.


При минус 30°C отдаваемый заряд при токе 0.2 С составил 1,15 Ач или 88% от номинала.

Разработка устройств оптимального управления гибридными энергоустановками (при активном участии Меньшикова Я.А.)

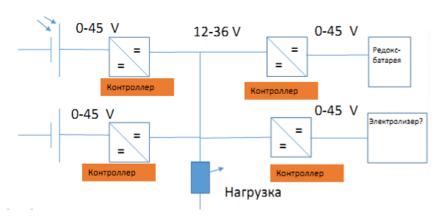
Структурная схема системы на основе контроллера СКЗ-20-40-Б4-В03

Внешний вид МРРТ-контроллера СКЗ-20-40-Б4-В03

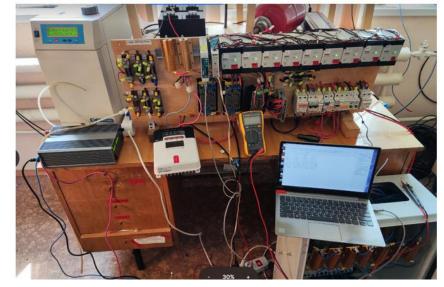
Портативный источник питания ФИП 5-12 на основе контроллера СКЗ-20-40-Б4-В03 (разработан и изготовлен при поддержке Фонда Бортника)

- Кпд до 95%
- MPPT
- Питание собственных нужд как от АКБ, так и от СБ
- Прогрев АКБ перед зарядом
- Встроенная система выравнивания напряжений на элементах АКБ
- Прекращение разряда и заряда по выходу за уставки любого элемента АКБ

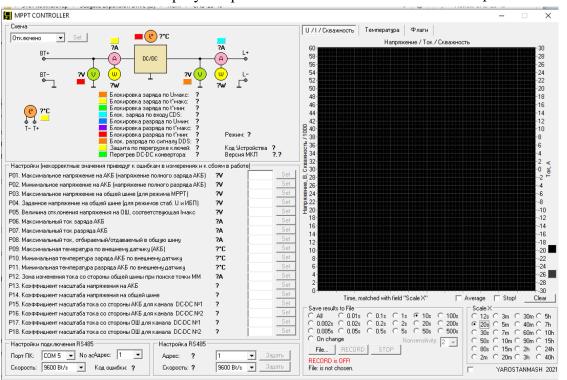
Разработка устройств оптимального управления гибридными энергоустановками (при активном участии Меньшикова Я.А.)



Внешнии вид экспериментального ооразца экстремального регулятора СПЗ 25-40


120 100 80 80 40 40 0 0,05 0,1 0,15 0,2 0,25 0,3 0,35 Приведенная мощность входа СБ

контроллером


- Кпд до 97%
- МРРТ и двухстадийный заряд АКБ
- Питание собственных нужд как от АКБ, так и от СБ
- Наличие трёх режимов: МРРТ, источник бесперебойного питания, стабилизатор напряжения в общей шине DC
- Возможность мониторинга токов и напряжений контроллера внешним устройством по RS 485

Блок-схема гибридной установки с управлением по шине DC на основе СПЗ 25-40

Внешний вид стенда-имитатора гибридных энергоустановок

Интерфейс программного обеспечения для программирования экстремального регулятора (контроллера) СПЗ 25-40 по шине RS 485 с ПК