Технико-экономические эффекты от внедрения технологий распределенной энергетики в малых и средних городах

Л.С. Мышкина

Lsmyshkina@gmail.com

Новосибирский государственный технический университет НЭТИ

Исследование выполнено за счет гранта Российского научного фонда № 24-29-20057, https://rscf.ru/project/24-29-20057/ и гранта № p-75 Правительства Новосибирской области


Положения к обсуждению

- 1. В ЕЭС России обостряются диссонансы на фоне избыточного генерирующего и сетевого оборудования. Это проявляется ограничениями в поставках электроэнергии из-за: системных и локальных аварий; высокой стоимости и срока технологического присоединения; превышающих инфляцию темпов роста цены электроэнергии на оптовом и розничных рынках.
- 2. В существующей модели проектирования развития ЕЭС России основное внимание уделяется крупным электростанциям и высоковольтным сетям, при этом игнорируется развитие сети среднего напряжения образующих энергорайоны в региональных энергосистемах от которых запитана основная масса потребителей.
- 3. В современных условиях потребители вынуждены самостоятельно решать проблемы с эффективностью энергоснабжения и поэтому проявляют интерес в малой генерации, но сталкиваются с сопротивлением монополистов, что замедляет развитие распределённой энергетики.
- 4. Основные объекты распределённой энергетики локальные энергосистемы различного назначения, где основой служит мини-ТЭЦ и генерация на ВИЭ мощностью до 25 МВт, которые возникают инициативно и вносят дополнительную неопределённость в прогнозы спроса и производства электроэнергии.
- 5. Розничные рынки монополизированы, а принцип разделения видов деятельности не позволяет монополистам конкурировать. Появление объектов распределённой энергетики может создать определенную конкуренцию и предложить новые системные услуги, но процесс сдерживается технологическими и организационными барьерами.
- 6. Очевидна необходимость придания процессу перехода к распределенной энергетики упорядоченного, регулируемого и прогнозируемого характера. Попытки противодействия ее развитию усугубляют дисбалансы и обостряют противоречия. Необходимо гармоничное сочетание централизованного и децентрализованного управления развитием.

Структура производства и потребления электроэнергии

- Социально-экономические преобразования привели к изменению структуры электропотребления в России.
- С 1991 по 2024 гг. до 53% снизилась доля промышленной нагрузки и до 28% возросла доля коммунальных и прочих нагрузок, что привело к разуплотнению графика нагрузки.
- При этом структура генерации в ЕЭС России изменилась незначительно.

Реакции на изменение структуры электропотребления

Появление парогазовых установок большой мощности

1960 - 2010 гг.

Единичные проекты. Например: 1972 г. – Невинномысская ГРЭС (ПГУ-170); 1997 г. – Южная ТЭЦ (ГТЭ-160); 2001 г. – Северо-Западная ТЭЦ (ПГУ-450Т); 2005 г. – Калининградская ТЭЦ-2 (ПГУ-450Т) др.

После 2010 г.

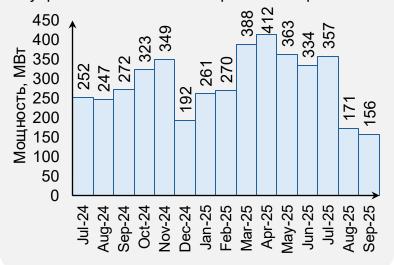
Программа ДПМ и ДПМ-2.

Введены в эксплуатацию более 45 ПГУ на базе зарубежных ГТУ.

Завершение серии отечественной ГДТ-110 производства «ОДК-Сатурн».

Начало разработки отечественной ГТУ большой мощности АО «Силовые машины».

После 2022 г.


Санкции на зарубежные ГТУ большой мощности. Разработка линейки отечественных ГТЭ-65, ГТЭ-170.

В 2025 году – испытание ГТЭ-170 на Каширской ГРЭС.

Системная услуга: «Управление изменением режима потребления»

В 2019 году ПП РФ от 20.03.2019 № 287 утвержден к реализации пилотный проект агрегированного управления спросом. Проект закончился в декабре 2023, с апреля 2024 года реализован переход к целевой модели.

Рис. 5. Фактический объём оказанных услуг по управлению изменением режима потребления

Увеличение избыточности

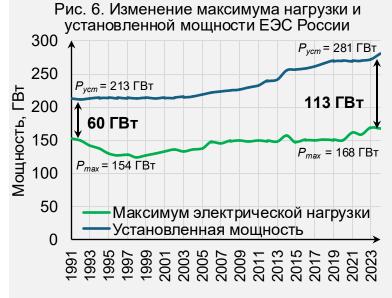
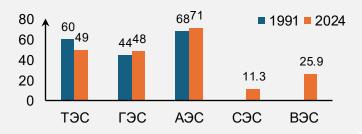



Рис. 7. Коэффициент использования установленной мощности в ЕЭС России

Прогнозирование в ЕЭС России

При управлении развитием наблюдается низкая точность долгосрочных прогнозов электропотребления.

Исторически, фактический спрос отличался от плановых показателей.

Рис. 8. Прогнозы электропотребления в ГенСхеме, млрд.кВтч

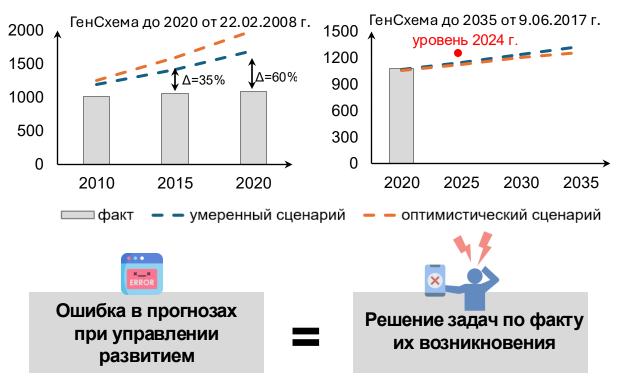
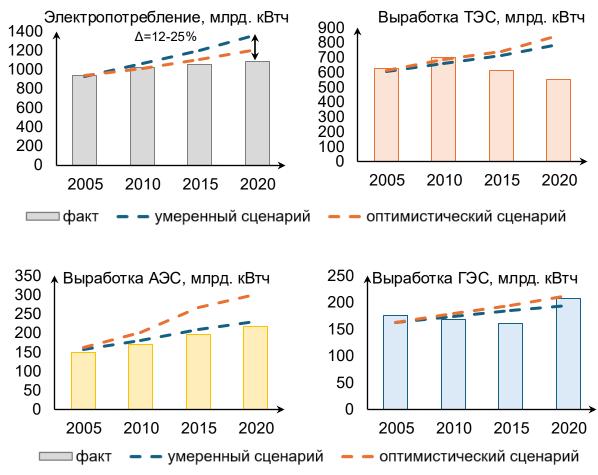
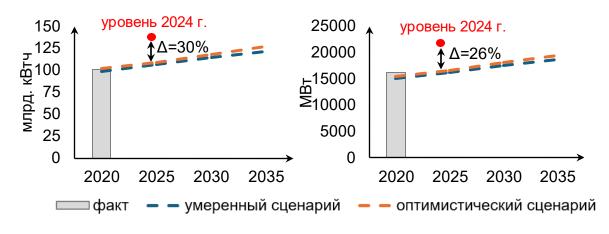




Рис. 9. Прогнозы в Энергетической стратегии до 2020 от 28.08.2003 г.

Дефицит мощности и энергии в ОЭС Юга

Рис. 10. Прогноз по ОЭС Юга в ГенСхеме до 2035 г.

Примеры системных аварий в ОЭС Юга

- 8 9 июля 2024 г. в Ростовской области произошли аварийные отключения энергоблока №7 Новочеркасской ГРЭС, блока №1 Ростовской ТЭЦ-2 и блока №2 Волгодонской ТЭЦ-2. Объём выведенной генерации составляет, как минимум, 1,3 ГВт. Массовые нарушения электроснабжения затронули более 600 тыс. потребителей.
- 16 июля 2024 г. в ОЭС Юга введены ограничения потребления мощности на 1,5 ГВт из-за отключения энергоблока Ростовской АЭС. Отключения затронули около 2,5 млн человек.
- 23 августа 2024 г. отключен энергоблока №1 Ростовской АЭС мощностью 1 ГВт.

Принятые в 2024-2025 гг. решения

Строительство 2,2 ГВт ТЭС

Объекты: Динская ТЭС ОГК-2,

Краснодарская ТЭЦ,

Таврическая ТЭС, Ударная ТЭС

Мощность: 2,2 ГВт **Технологии:** ПГУ

CAPEX: 693,1 млрд руб. **Стоимость 1 МВт:** 300 млн

руб./МВт.

Срок реализации: более 18 мес.

Строительство 350 МВт СНЭЭ (ноябрь 2026 г.)

Объекты: СНЭЭ мощностью до 250 МВт (1,5 тыс. МВтч) в

Краснодарском крае и до 100 МВт (600 МВтч) в Крыму

САРЕХ: 59 млрд руб. Стоимость 1 МВт: 170 млн руб./МВт.

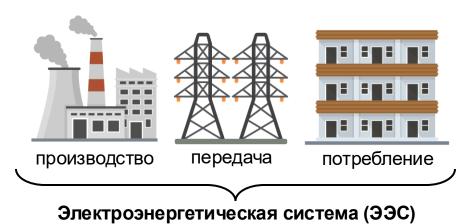
Эксплуатация 416,6 МВт мобильных ГТЭС

Эксплуатация 19 мобильных ГТЭС «Россетей» в Крыму и Новороссийске. **ГТЭС имеют статус вынужденной генерации!** Для ГТЭС устанавливают повышенную цену мощности, которую оплачивают потребители.

Альтернативное решение

Строительство ГПУ

Технологии: ГПУ


Стоимость 1 МВт: 80-100 млн руб./МВт.

Срок реализации: 6-18 мес.

За аналогичные САРЕХ можно возвести 600-750 МВт распределенной генерации с ГПУ!

Управление развитием ЕЭС России

производство

передача

потребление

Система электроснабжения

Система управления развитием электроэнергетической системы превратилась систему В управления электроснабжения развитием системы крупных подстанций!

городах,

большинство

низкого

где

велико

Финансовые последствия реализации мероприятий, заложенных в Генеральной схеме



Рис. 12. Ценовые последствия в среднем по ЕЭС России

Участие региональной энергетики в управлении развитием ЕЭС России — потребители самостоятельно

Интересы различных субъектов при управлении развитием

Максимум электрической нагрузки? Реконструкция сетевого комплекса?

Экономическая и техническая доступность технологического присоединения? Бесперебойность электроснабжения и качество электроэнергии?

- ▶ При управлении развитием ЕЭС России вопросы региональных энергосистем решаются с позиций обеспечения покрытия максимума спроса!
- ≻ Нередко потребители уходят на собственную генерацию так как неудовлетворены бесперебойностью и/или экономической доступностью электроснабжения.

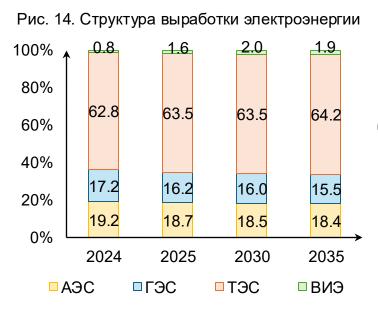
Потребители самостоятельно решают вопросы повышения доступности и бесперебойности электроснабжения!

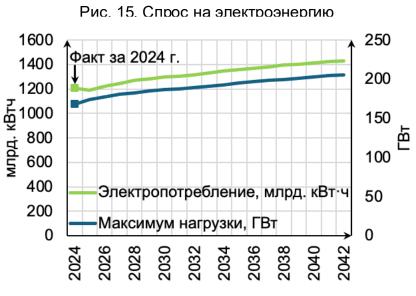
Табл. 1. Примеры собственной генерации

Год	Объект	Электри еская мощность, МВт	Тип оборудования
2015	Тепличный комплекс Тепличный комплекс Магнит,Краснодарский край	17,2	ГПУ
2015	Тепличный комплекс «ЛипецкАгро», Липецкая обл.	22	ГПУ
2017	Тепличный комплекс «Зелёная линия», Краснодарский край, станица Пластуновская	24,78	ГПУ
2018	ГТУ г. Елабуга	20	ГТУ
2019	Тепличный комплекс «Рязанские овощи», Рязанская область	18	ГПУ
2020	Тепличный комплекс «Трубичино», Новгородская обл.	10	ГПУ
2021	Предприятия по производству азотных удобрений, Кемеровская обл.	22,5	ГПУ
2021	Тепличный комплекс «Пермский», Перский край	44	ГПУ
2021	Тепличный комплекс "Мичуринский", Тамбовская обл.	104	ГПУ
2023	ТРЦ, Тульская обл.	2,8	ГПУ
2023	ЦОД Ростелеком, Московская обл.	24	дэс
2024	Винодельческий комплекс "Усадьба Дивноморье", Краснодарский край	4,5	ГПУ
2025	ЦОД Дубна, Московская обл.	52,8	дэс

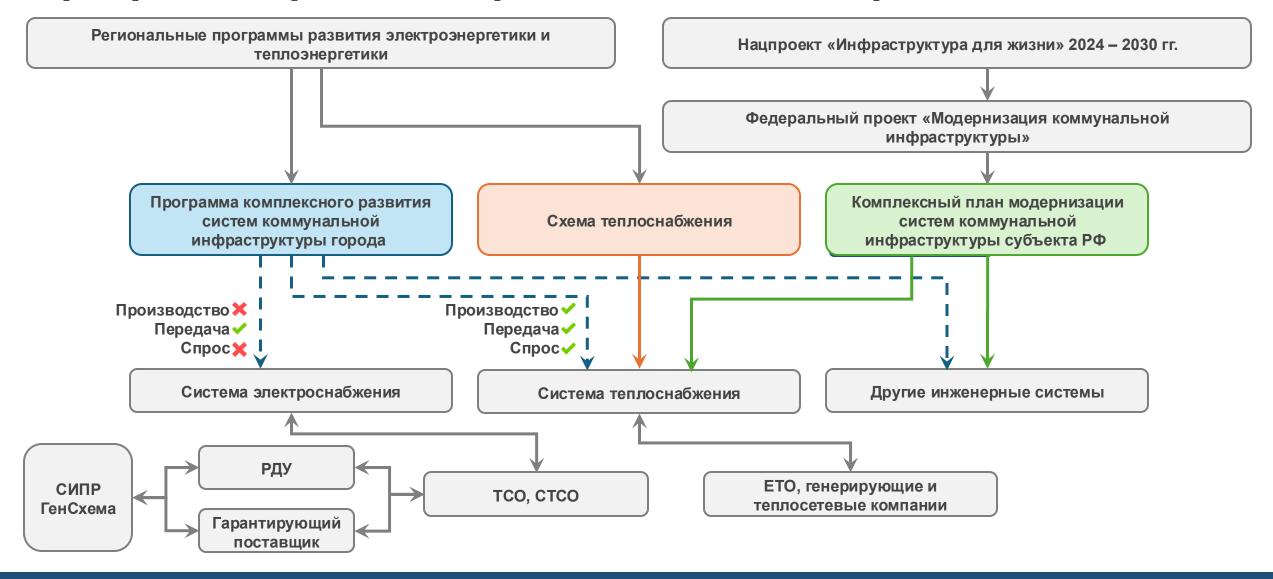
Технология управления развитием ЕЭС России не соответствует современным вызовам

Выводы:


- ▶Процесс перспективного планирования электроэнергетики во многом монополизирован государственной организацией АО «Системный оператор». Региональная энергетика «выпадает» из управления развитием.
- ▶Образ ЭЭС будущего должен определяться потребителями, а потребители сегодня выпадают из управления развитием.
- Документы, определяющие развития отрасли и ЕЭС России, охватывают не все перспективные возможности повышения эффективности электроэнергетики.
- Управление развитием остается традиционным, где основным является ответ на вопрос: «строить ЛЭП или электростанцию?»



Прогнозы ГенСхеме до 2042 г.



Новые типы потребителей, а технологии старые!

Программы развития региональной энергетики

Развитие распределенной энергетики на базе когенерации

Управление развитием

Ресурсная достаточность

Наличие на территории углеводородных, возобновляемых и вторичных энергоресурсов, которые могут использоваться для производства энергии.

Технологическая допустимость

Возможность реализации определенного технологического процесса или использования конкретной технологии с учетом существующих условий и ограничений.

Экономическая доступность

Экономическая доступность технических средств зависит от стоимости этого средства и связанными с его приобретением и использованием расходами.

Потенциал для развития распределенной генерации огромен, учитывая наличие в России более 5 тыс. отопительных котельных мощностью свыше 20 Гкал/ч.

Табл. 2. Котельные в России

Мощность		Отпусн	степла
котельных	Кол-во, шт.	млн. Гкал	%
до 3 Гкал/ч	56337	49	9
от 3 до 20 Гкал/ч	13307	119,4	23
от 20 до 100 Гкал/ч	2448	139,3	26
сыше 100 Гкал/ч	588	219,7	42

Рис. 16. Карта существующей системы газоснабжения РФ

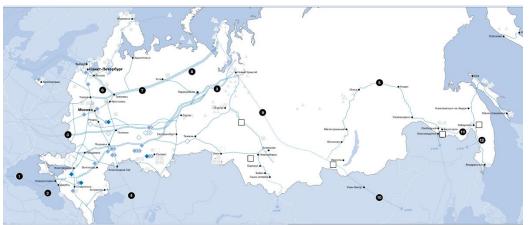


Рис. 17. Структура тепловых мошностей

■ТЭС

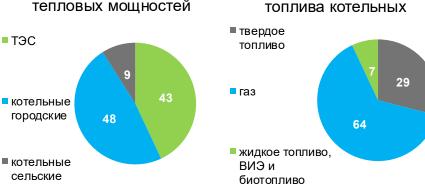


Рис. 18. Структура

Стратегические показатели газификации

2030 году — 82,9%, 2036 году — 84%,

2050 году — 86,2%.

Существующие достижения в области ГПУ

Доступные на отечественном рынке газопоршневые установки мощностью более 800 кВт

Табл. 3. Характеристики ГПУ Liyu Gas Power (производство Китай)

Модель	LY1200	LY1600	LY2000
Электрическая мощность, кВт	1100	1500	2000
Тепловая мощность, кВт	1238	1678	2204
КПИТ, %	87,9	87,5	87,4
Электрический КПД, %	41	41,3	41,6
Тепловой КПД, %	46,9	46,2	45,8

Табл. 4. Характеристики ГПУ ПСМ на базе двигателя Baudouin (производство Россия)

Модель	ГПУ AGBa-1000 16M33G6N0/5	ГПУ 16M33G6N0/5	ГПУ AGBa-1500 12M55G6N0/5
Электрическая мощность, кВт	1000	1200	1500
Тепловая мощность, кВт	1020	1287	1629
КПИТ, %	71,9	•	85,3
Электрический КПД, %	38,6	•	41,3
Тепловой КПД, %	33,3	-	44

Компании, предлагающие комплексные услуги по проектированию, строительству и эксплуатации мини-ТЭЦ

Табл. 5. Примеры появления мини-ТЭЦ с ГПУ

таол. э. примеры появления мини-тод стттэ					
Объект	Территория	Изготовитель (мощность, МВт)			
Энергоцентр «НЛМК-Урал»	Нижние Серги	MWM (4,5)			
Энергоцентр-2 АО «ЮГК»	Пласт	Caterpillar, MWM (24,4)			
Энергоцентр СУМЗ	Ревда	MWM (21,5)			
Энергоцентры ПАО Лукойл	XMAO	ПАО «ОДК-Сатурн» (18)			
Эпергоцентры ПАО лукойл	OAHR	ОАО «Авиадвигатель» (30)			
Тепличный комплекс «Рязанские овощи»	Рязанская область, с. Фурсово	GE Jenbacher (18)			
Тепличный комплекс «Юг-Агро»	Краснодарский край, ст. Ярославская	GE Jenbacher (16,4)			
Тепличный комплекс «Зеленая Линия»	Краснодарский край, ст. Пластуновская	GE Jenbacher (17,2)			
ООО «Новые технологии»	Республика Адыгея, аул Тахтамукай	GE Jenbacher (11,8)			
Складской комплекс MLP	г. Подольск	Siemens (7,2)			
	г. Челябинск	MWM (2,4)			
Распределительные центры ПАО «Магнит»	Тамбовская обл., с. Стрельцы	MWM (0,8)			
	г. Лермонтов	MWM (2,5)			
На базе мини-ТЭЦ «Центральная»	остров Русский	Kawasaki (33)			
На базе энергоцентра «Мякинино»	г. Красногорск	GE Jenbacher (30)			
На базе мини-ТЭЦ мкр. Восточный	г. Звенигород	ОАО «Авиадвигатель» (18)			
Энергоцентр Ольгино	г. Железнодорожный	Solar Turbines (21,6)			
На базе мини-ТЭЦ «Сфера»	г. Южно-Сахалинск	Caterpillar (7,2)			

Существующая модель управления развитием усложняет интеграцию распределенной энергетики

Развитие региональных энергосистем в большей мере учитывает интересы трех субъектов

Системообразующая территориальная сетевой организация (СТСО)

Системный оператор в лице регионального диспетчерского управления (РДУ)

Барьеры интеграции РЭ

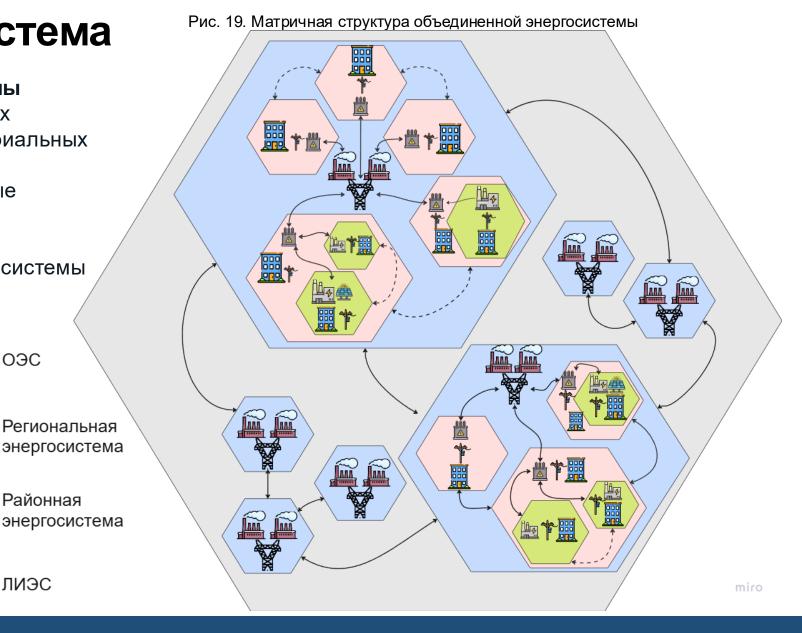
- Выпадающих доходов от снижения объемов передачи электроэнергии и сокращения объема инвестиций в их развитие.
- Увеличение токов КЗ.
- Необходимость реконструкции РЗиА.

Опасаются появления элементов децентрализованного управления и увеличения многообразия схемнорежимных ситуаций

Гарантирующий поставщик (ГП)

Основную роль в **сдерживании развития распределенной энергетики** играют **СТСО** и **РДУ**, от которых во многом зависит возможность технологического присоединения объектов РЭ к сетям и режимы их работы в составе региональных систем электроснабжения.

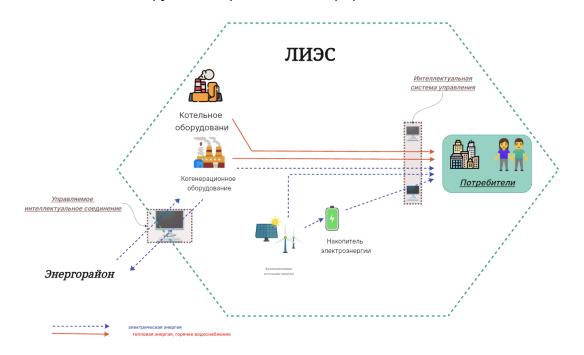
ОЭС


Районная

ЛИЭС

Районная энергосистема

Включение в районные энергосистемы объектов распределенной энергетики, их объединение и формирование территориальных энергосистем в рамках региональных энергосистем позволяет получать новые системные эффекты.


Неотъемлемой частью районной энергосистемы станет Локальная интеллектуальная энергосистема (ЛИЭС).

Покальная интеллектуальная энергосистема как новый объект региональной энергетики

ЛИЭС – самодостаточный комплекс энергетических установок, увязанный в единый технологический процесс, где балансовая и режимная надежность обеспечивается мини-ТЭЦ электрической мощностью до 25 МВт и распределительной электрической сетью напряжением 0,4-10 кВ.

Рис. 20. Модель функционирования интегрированной ЛИЭС

Способность к автономной работе

Обеспечение бесперебойного электроснабжения потребителей как при параллельной работе с региональной энергосистемой, так и в автономном «островном» режиме.

Интеллектуальное управление

Функционирование на базе децентрализованной автоматической системы управления, способной поддерживать нормативные значения частоты и напряжения во всех схемнорежимных состояниях

Высокая степень цифровизации

Глубокая цифровизация инфраструктуры, необходимая для эффективного децентрализованного управления процессами производства, передачи и потребления энергии.

Трансформация архитектуры региональной энергетики

Переход к многоячеистой структуре

Иерархическая система преобразуется в многоячеистую структуру. Каждая ячейка является децентрализованным объектом распределенной энергетики, а ядром остается ЕЭС России

Децентрализация управления

Интеллектуализация системы и децентрализация систем управления позволит реализовать встречные оперативные сигналы между ячейками

Многонаправленность энергопотоков

Формируются двунаправленные потоки мощности между ЛИЭС и энергорайоном, что является основой для оказания системных услуг

Рис. 21. Иерархическая и матричная структура

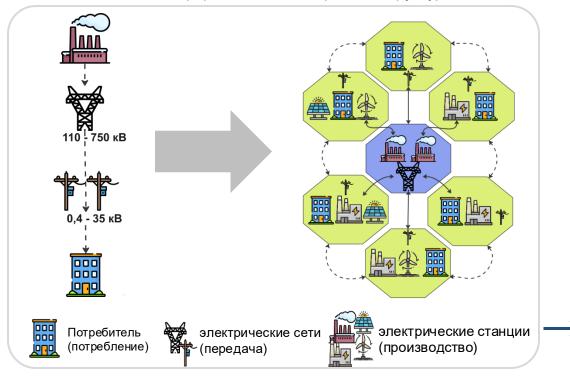



Рис. 22. Изменение архитектуры энергосистемы

В новой архитектуре ключевая роль отводится распределительным сетям, которые становятся связующим звеном не только между ЛИЭС и энергорайоном, но и между самими ЛИЭС.

Взаимосвязь системных эффектов и свойств ЛИЭС

Свойства ЛИЭС и их проявления	Системные эффекты
 Сбалансированность спроса и поставок электроэнергии в различных схемно-режимных состояниях. Взаиморезервирование, обеспечиваемое наличием двухстороннего независимого питания электроприемников. 	Повышение качества электроэнергии, бесперебойности и гибкости электроснабжения
3. Способность компенсировать реактивную мощность и поддерживать узловые напряжения на требуемом уровне.	Продление срока службы сетевого оборудования
ОКУПАЕМОСТЬ	
1. Сжатые сроки создания: 12–18 месяцев, в зависимости от мощности и выбранной технологии.	
2. Срок окупаемости: 3–5 лет, в зависимости от назначения и коммерциализации выполняемых функций.	Повышение инвестиционной привлекательности региональной электроэнергетики
3. Высокая энергоэффективность производства энергии, сопровождаемая снижением углеродного следа.	
ЭКОНОМИЧНОСТЬ	Портинацию поступности опсутрино сусй оноргии пла
1. Конкурентная стоимость электрической энергии в сочетании со стабильными долгосрочными ценами.	Повышение доступности электрической энергии для субъектов экономики
2. Открытость для технологического присоединения новых потребителей, сопровождаемая снижением затрат на развитие сетевого комплекса.	Снижение темпов роста тарифов на передачу электроэнергии
3. Возможность ценообразования в зависимости от профиля нагрузки, что позволяет осуществлять управление спросом.	Снижение нагрузки перекрестного субсидирования на субъекты экономики
экологичность	
1. Возможность частичного вытеснения угольных станций и котельных из балансов электрической и тепловой мощности и энергии.	Повышение экологической безопасности в регионах

Определение энергорайонов для создания ЛИЭС

Индекс надежности энергорайона — это отношение требуемого и текущего значения коэффициента готовности центра питания районной подстанции, от которого осуществляется электроснабжение потребителей по распределительным сетям 0,4—10 кВ.

$$IR_i = 1 - (K_i^{\text{тек}}/K_i^{\text{пл}})$$

где: IR_i — индекс надежности i -го ЦП; $K_i^{\text{тек}}$, $K_i^{\text{пл}}$ — текущее и плановое значение коэффициента надежности i -го ЦП.

Индекс эффективности энергорайонов характеризует режимную надежность системы электроснабжения в территориальном разрезе с учетом значимости нагрузки, присоединенной к ЦП.

$$ISE_i = (1 - IR_i) \cdot \left(\frac{P_i}{\sum_{1}^{n} P_i}\right)$$

где: ISE_i – индекс эффективности i -го ЦП; P_i – нагрузка, присоединенная к i -му ЦП; n –количество ЦП в энергосистеме исследуемых регионов.

Табл.6. Декомпозиция узлов для выбора мест присоединения ЛИЭС

	IR _{LV}	IR _{AV}	IR _{HV}
ISE _{HV}	Присоединение ЛИЭС (внедрение новых технологий)	ТПиР с элементами новых технологий, в т.ч. присоединение ЛИЭС	ТОиР
ISE _{AV}	ТПиР с элементами новых технологий, в т.ч. присоединение ЛИЭС	ТПиР	ТОиР
ISE _{LV}	ТОиР	ТОиР	ТОиР

Отопительные котельные – основа для создания ЛИЭС

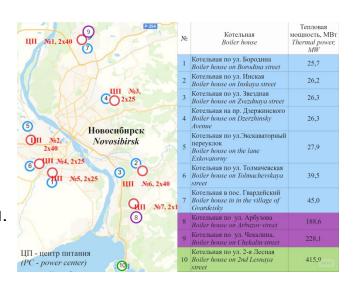
Территория энергорайона практически всегда больше зоны действия Единой теплоснабжающей организации (ЕТО) на основе котельной.

Для трансформации в мини-ТЭЦ из множества котельных следует отобрать те, которые соответствуют **признакам**.

Признак № 2: Используемое топливо

Ориентация на газопоршневые установки требует наличия подключения котельных к системе газоснабжения.

Признак № 3: Выполнение функции ЕТО


Котельные выполняющие функцию ЕТО являются доминирующими по установленной мощности. Высокая тепловая нагрузка

Ранжирование

 $R = Q/P_{\text{ЦП_ДОП}}$

 $P_{\rm цп_доп}$ - электрическая мощность центра питания с учетом критерия n-1; Q — тепловая мощность котельной.

Имитационная модель для выбора структуры мини-ТЭЦ

Взаимосвязь тепловой и электрической мощности ГПУ:

$$Q^G = P^G \cdot k$$

Установленная тепловая мощность мини-ТЭЦ

$$Q^{\Sigma} = P^G k + Q^K$$

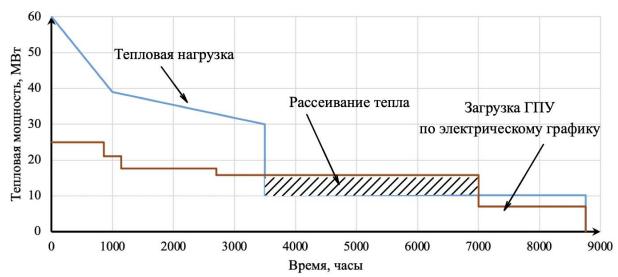
Структура оборудования мини-ТЭЦ:

$$Q^{\Sigma}/P^{G} = k \cdot (1 + \lambda),$$
$$\lambda = Q^{K}/Q^{G}$$

Отпуск электрической энергии ГПУ:

$$W_P = P^G \cdot T^G$$

Полезный отпуск тепловой энергии ГПУ

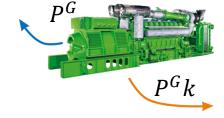

$$W_H = P^G \cdot T^G \cdot k$$

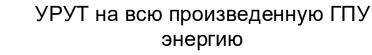
Соотношение отпускаемой тепловой и электрической энергии на мини-ТЭЦ

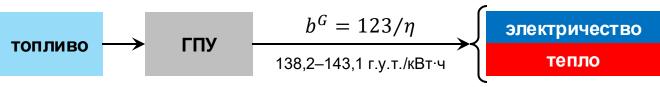
$$W_Q/W_P = k \cdot (\delta + \gamma \cdot \lambda),$$

 $\gamma = T^K/T^G$

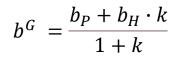
 Q^G и P^G — установленная электрическая и тепловая мощность когенерационной установки, МВт; Q^Σ — общая тепловая мощность станции, МВт; k— коэффициент когенерации, о.е.; Q^K — мощность котельного оборудования, МВт; W_P — электрическая энергия, вырабатываемая на ГПУ, МВтч; W_H — тепловая энергия, вырабатываемая на ГПУ, МВтч; T^K и T^G — КИУМ котлов и ГПУ, %; λ — соотношение тепловой мощности котельного и когенерационного оборудования, о.е; δ — доля полезного использования тепла, произведенного на ГПУ, о.е.; γ — соотношение КИУМ котельного и когенерационного оборудования, о.е.


Рис. 25. График тепловой нагрузки

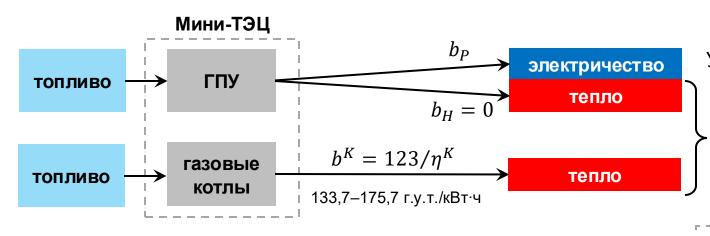




Котлы



Роль мини-ТЭЦ в повышении топливной эффективности



пропорциональное разнесение

$$b^G = b_P = b_H$$

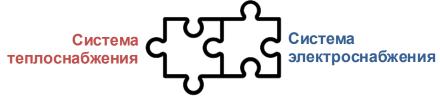
УРУТ на производство тепловой энергии на мини-ТЭЦ

$$b_Q = \frac{\delta \cdot b_H + \gamma \cdot \lambda \cdot b^K}{\delta + \gamma \cdot \lambda}$$

Значение b_Q существенно меньше b^K

Пример

 b^G — УРУТ на всю произведенную ГПУ энергию, г.у.т./кВт·ч; b_H и b_P — УРУТ ГПУ на производство тепла и электричества, г.у.т./кВт·ч; k — коэффициент когенерации, о.е.; η и η^K — коэффициент полезного использования топлива ГПУ и котельной, %; λ — соотношение тепловой мощности котельного и когенерационного оборудования, о.е; δ — доля полезного использования тепла, произведенного на ГПУ, о.е.; γ — соотношение КИУМ котельного и когенерационного оборудования, о.е.



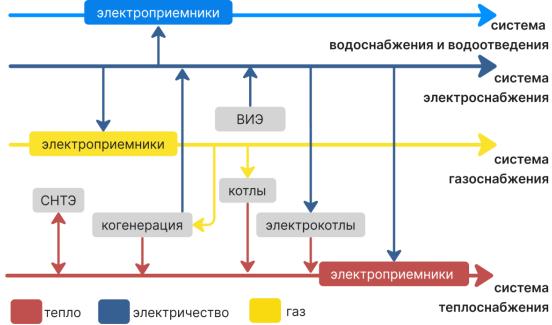
$$\lambda = \frac{Q^K}{Q^G} = 2 \text{ o. e.} \quad \gamma = \frac{T^K}{T^G} = 0.5 \text{ o. e.}$$

 $b_Q = 66,9 - 87,9$ г. у. т/кВтч

Мульти-энергетическая инфраструктура

Мульти-энергетическая инфраструктуры – это совокупность объектов, образующих систему энергоснабжения, обеспечивающую условия жизнедеятельности на территории.

Мульти-энергетическая инфраструктура


Эффекты:

- Повышение технических и экономических показателей;
- Привлечение инвестиций с привлекательными сроками окупаемости;
- Создание благоприятных условий для устойчивого развития территорий.

Отличия мульти-энергетической инфраструктуры:

- Совместное производство тепловой и электрической энергии вблизи потребителей
- Целостность систем теплоснабжения и электроснабжения
- Высокая надежность и экономичность энергоснабжения

Рис. 26. Взаимосвязь инженерных систем электроприемники

Повышение эффективности мини-ТЭЦ

Рис. 27. Годовой и суточный график коммунальнобытовой нагрузки

График потребления тепла в

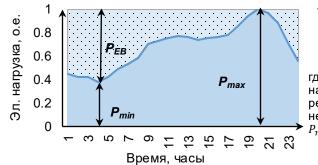
суточном разрезе времени достаточно плотный, а в годовом обладает высокой неравномерностью.

График потребления электричества, наоборот, суточный имеет пиковый характер, а годовой характеризуется высокой плотностью.

Существующие противоречия

Доминирующая роль раздельного производства тепла на газовых котлах

КИУМ газовых котлов не более 20%


Необходимо повышение маневренности газовых котлов

Актуальные задачи

Повышение коэффициентов использования установленной мощности ГПУ и газовых котлов

Снижение установленной мощности газовых котлов в структуре мини-ТЭЦ

Рис. 28. Режим работы ГПУ при наличии пиковых электрических котлов для «заполнения долин»

Отпуск электроэнергии для электроснабжения электрических котлов Отпуск электроэнергии для покрытия графика нагрузки

Электрическая нагрузка

Рис. 29. Покрытие суточного графика спроса на тепло при наличии СНТЭ

Установленная тепловая мощность электрокотлов:

$$Q_{EB} = P_{max} \cdot (1 - \alpha) \cdot \eta_{EB}$$

где P_{max} — максимальная электрическая нагрузка, покрываемая ГПУ, МВт; Re — норма резервирования; η_{EB} — коэффициент неравномерности графика нагрузки, P_{min}/P_{max} , о.е; α — КПД электрокотлов, о.е.

Выданное и накопленное СНТЭ тепло:

 $E_{TES.discharge} = \eta_{TES} \cdot E_{TES.charge},$ $E_{TES.discharge}$

 $= \overline{Q_{TES.discharge}} \cdot t_{TES.discharge}$

 $E_{TES.charge} = \overline{Q_{TES.charge}} \cdot t_{TES.charge}$

 $t_{TES.discharge} + t_{TES.charge} = 24$

где η_{TES} — КПД СНТЭ, о.е. $E_{TES.discharge}$ и $E_{TES.charge}$ — тепловая энергия, выданная и накопленная СНТЭ, МВТ·Ч; $Q_{TES.discharge}$ и $Q_{TES.charge}$ — значение мощности разрядки и зарядки за период времени t, МВт, $t_{TES.charge}$ и $t_{TES.discharge}$ — время разрядки и зарядки. c — теплоемкость воды, равная 1,667·10-6 МВТ/кг·°С; T — температура воды, поступающей в резервуар, значение которой не превышает 95 °С.

Модель мульти-энергетической инфраструктуры

Функции электрических котлов:

- Повышение КИУМ ГПУ
- Увеличение производства тепла на ГПУ
- Снижение мощности пиковых газовых котлов
- Повышение надежности теплоснабжения
- Снижение транспортных потерь

Функции системы накопления тепла:

- Повышение КИУМ газовых котлов
- Снижение мощности пиковых газовых котлов
- Повышение надежности теплоснабжения
- Распределение качественноколичественного регулирования

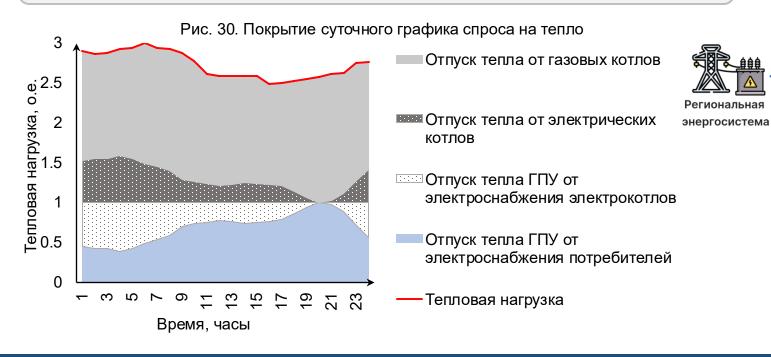
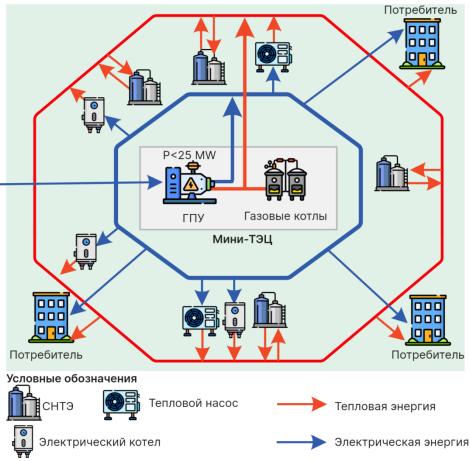
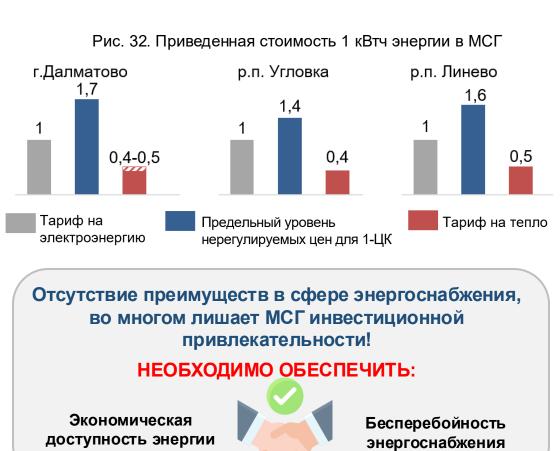



Рис. 31. Модель мульти-энергетической инфраструктуры

Малые и средние города России

Малые и средние города (МСГ) России

Табл. 7. Характеристики некоторых городов Новосибирской области


Муниципальное обр <i>а</i> зование	Численность населения, чел.	Статус ТОР/ОНП	Тип источника	Кол-во, шт.	Суммарная мощность, Гкал/ч
р.п. Линево	17610	+/+	Производственно - отопительная котельная	1	207,55
г. Черепаново	19935	-/+	Отопительные котельные	9	34,88
г. Болотное	15417	-/+	Производственно-отопительные и отопительные котельные	13	24,568
г.Искитим	56654	-/+	Производственно-отопительные и отопительные котельные	7	368,856
г.Обь	30973		Отопительные котельные	10	162,9
р.п. Горный	8712	+/-	Отопительные котельные	2	27,7
r Kvijerinop	41494	-/+	Отопительные котельные	9	9,698
г. Куйбышев	4 1494	-/ +	ТЭЦ	1	293
г. Карасук	24733	-/+	Производственно-отопительные и отопительные котельные	16	83,73
г. Барабинск	27456	-/+	Производственно-отопительные и отопительные котельные	15	92,404
г. Чулым	10885	-/+	Отопительные котельные	16	41,97
г. Тогучин	20393	-/+	Отопительные котельные	17	58,06
г. Татарск	23444	-/+	Производственно-отопительные и отопительные котельные	22	63,384

Актуальность перехода в малых и средних городах

Табл.8. Характеристика энергоснабжения в некоторых малых и средних городах

Территория		Анжеро- Судженск	г.Далмато во	р.п. Угловка	р.п. Линево	р.п. Горный
Haarawa Tuawa	2018 г.	76,2	12,6	2,4	18,2	9,3
Население, тыс.чел.	2023 г.	68,1	12,5	2,3	18	9,4
Способ энергоснабжения		1		очник тепла ние от подста		1
Свободная электрическая мощность для технологического присоединения в радиусе 5 км, МВА		25,6	2,01	0,203	1,73	0
Предельный уровень нерегулируемых цен, руб./кВтч		7,28	7,17	7,72	5,51	5,51
Тариф на электроэнергию для населения, руб./кВтч		3,01	4,11	5,49	3,36	3,36
Диапазон тарифов на тепловую энергию, руб./кВтч		1,66 – 4,16	1,8 – 2,15	2,43	1,75	1,04 – 1,91
Доступность электроэнергии для населения в месяц, тыс. кВтч		20,1	9,3	5,8	11,7	11,2
Доступность тепла для населения в месяц, тыс. кВтч		26,9	20,2	13,2	22,4	21,0

Пример в Новосибирской области

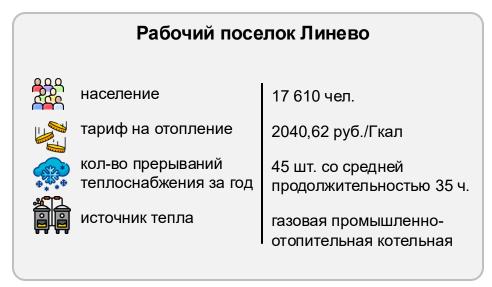


Рис. 33. Характеристика функционирования системы, включающей ГПУ и газовые котлы

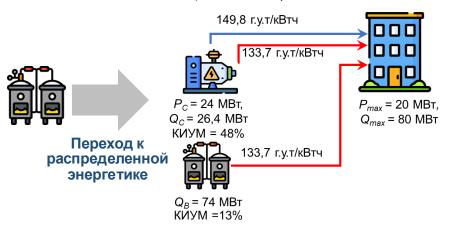
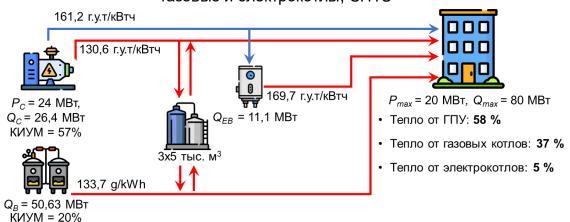
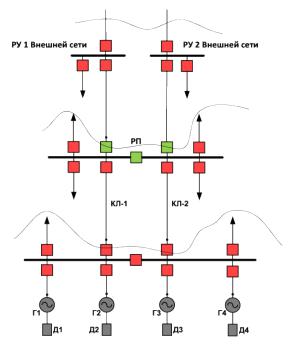



Рис. 34. Характеристика функционирования системы, включающей ГПУ, газовые и электрокотлы, СНТЭ

Эффекты перехода к ЛИЭС

- Повышение бесперебойности энергоснабжения;
- Повышение управляемости и наблюдаемости энергорайона;
- Снижение затрат на развитие сети для технологического присоединения новых потребителей;
- Исключение влияния перекрёстного субсидирования на субъекты хозяйственной деятельности;
- Повышение доли совместного производства энергии.

Эффекты перехода к мультиэнергетической инфраструктуре


- Годовой КИУМ газопоршневых установок повышается на 18%;
- Доля газовых котлов в покрытии спроса на тепло снижается на 32% при росте КИУМ на 53%;
- Требуемая установленная мощность газовых котлов уменьшается на 12%.

Локальные технические эффекты для ЛИЭС

Повышение надежности электроснабжения потребителей

Повышение надежности электроснабжения за счет двустороннего независимого питания

Рис. 35 – Контролируемые и управляемые сечения в ЛИЭС

В зоне ЛИЭС: SAIDI, SAIFI ↓ 30–40% В энергорайоне: SAIDI, SAIFI ↓ 10–15%

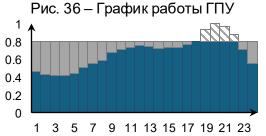
$$\Delta SAIDI = \left(\frac{\sum T_i \times N_i}{N_{max}}\right)'' - \left(\frac{\sum T_i \times N_i}{N_{max}}\right)',$$

$$\Delta SAIFI = \left(\frac{\sum \lambda_i \times N_i}{N_{max}}\right)'' - \left(\frac{\sum \lambda_i \times N_i}{N_{max}}\right)'$$

«"» — индексация прогнозного состояние системы электроснабжения; «"»— индексация текущего состояние системы электроснабжения; λ_i — интенсивность отказов i -ого критического элемента системы электроснабжения, ч; N_i — количество точек поставки отключаемых в результате технологического нарушения из-за отказа i -ого критического элемента системы электроснабжения, шт; N_{max} — количество точек поставки в системе электроснабжения, шт; T_i — время нахождения в неработоспособном состоянии i - ого критического элемента системы электроснабжения.

ВИЭ в размере 10% от мощности ГПУ

ESG


Неопределенность порождаемая использованием ВИЭ будет компенсирована в ЛИЭС

Приоритет:

Гибкие солнечные панели. Технология тонкопленочной фотовольтаики.

Повышение КИУМ ГПУ

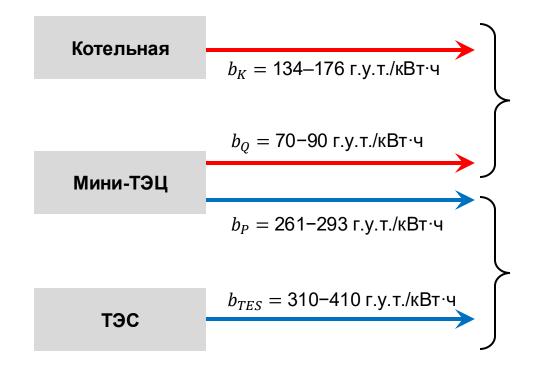
- □ Прием из внешней сети
- ■Выдача во внешнюю сеть
- Электроснабжение потребителей ЛИЭС

Ограничения:

- Допустимая пропускная способность линий электропередач
- Требования исключить выдачу мощности из энергорайона в сеть высокого напряжения

Топливный эффект

Табл. 9. Показатели эффективности производства энергии


Помостоли	2023 ¹	2035 ²
I Іоказатели		(план)
Удельный расход топлива при производстве тепловой энергии, г.у.т./кВт·ч	161,3	137.3
Удельный расход топлива на отпуск электрической энергии, г.у.т./кВт⋅ч	318	313,1

ПСУ 30-35%

ГТУ 33-42% ГПУ 42-47%

ПГУ 55-62%

² Энергетическая стратегия Российской Федерации на период до 2035 год

Топливный эффект от производства тепловой энергии ΔB_Q (т.у.т)

$$\Delta B_Q = W_Q \cdot (b_K - b_Q)$$

 W_Q — отпускаемая мини-ТЭЦ тепловая энергия, МВтч; b_H — УРУТ на производство тепла мини-ТЭЦ, г.у.т./кВт·ч; b_K — УРУТ на производство тепла котельной, г.у.т./кВт·ч.

Топливный эффект от производства электрической энергии ΔB_P (т.у.т)

$$\Delta B_P = W_P \cdot (b_{TES} - b_P)$$

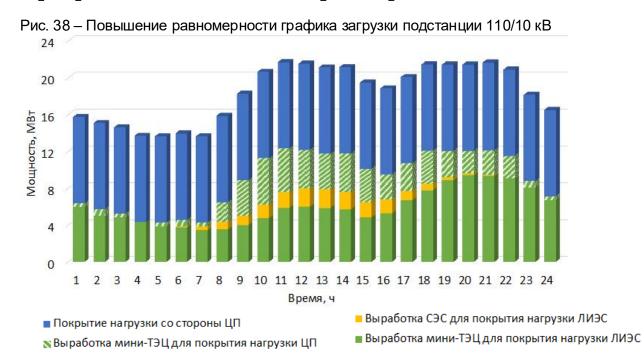
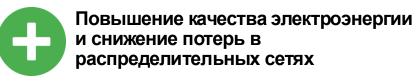

 W_Q — отпускаемая мини-ТЭЦ электроэнергия, МВтч; b_P — УРУТ на производство тепла мини-ТЭЦ, г.у.т./кВт·ч; b_{TES} — УРУТ на производство электроэнергии на ТЭС, г.у.т./кВт·ч.

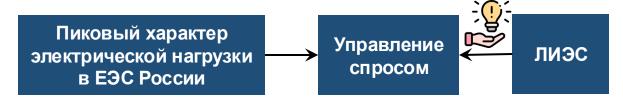
Рис. 37. Электрический КПД различных тепловых электростанций

¹ Государственный доклад о состоянии энергосбережения и повышении энергетической эффективности в Российской федерации за 2023 год от 07.05.2025


Системные технические эффекты в энергорайоне

Режим работы:

- Следование за нагрузкой ЛИЭС
- Следование за нагрузкой ЦП, осуществляя выдачу мощности в энергорайон



Мультиагентная система регулирования напряжения


АРВ ГПУ

Участие ЛИЭС в управлении изменением режима потребления электрической энергии в ЕЭС России

Позволит в отличии от действующего механизма исключить сокращение электропотребления в ЕЭС России!

Рис. 39. Снятие пиковых нагрузок при выполнении услуги управления спросом

Влияние повышения доли коммунальной нагрузки на значение оперативного резерва

Табл. 10. Размер оперативного резерва мощности и коэффициенты плотности и неравномерности суточных графиков нагрузки

рус					
Соотношение нагрузок		е нагрузок Плотность совмещенного графика и размер оперативного резерва			
промышле нная	коммунально- бытовая			Коэффициент равномерности	
15	85	9,52	0,911	0,829	
25	75	9,59	0,918	0,835	
35	65	9,75	0,926	0,845	
45	55	10.0	0,935	0,854	
55	45	10,42	0,947	0,863	
65	35	10,68	0,956	0,868	
75	25	10,78	0,958	0,870	
85	15	10,75	0,956	0,868	

Уход 10 % промышленности в ЛИЭС:

снижение оперативного резерва мощности: 0,42 % = 155 МВт

Уход 10 % коммунально-бытового потребления в ЛИЭС:

повышение оперативного резерва мощности: 0,26 % = 100 МВт

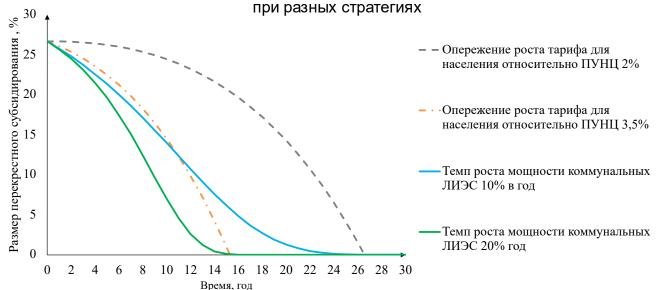
Создание ЛИЭС существенно снижает абсолютное значение максимальной мощности спроса. Благодаря включению ЛИЭС в состав ЕЭС России, абсолютная величина резерва уменьшится, а это самое капиталоемкое средство обеспечения балансовой надежности.

Влияние коммунальных ЛИЭС на объем перекрестного субсидирования

Различные виды перекрестного субсидирования, в том числе в интересах определенных субъектов РФ и населения, особенности возврата инвестиций снижают экономическую доступность электроэнергии для хозяйствующих субъектов.

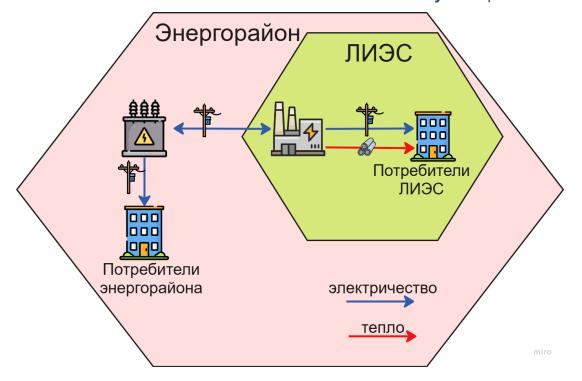
 $\Delta C^{\text{\tiny{IIEP}}}$ – размер перекрестного субсидирования,

С_н – установленный для населения тариф на электрическую энергию,


 $\lambda_{\rm H}$ – доля населения в структуре электропотребления,

 C_{π} – стоимость электрической энергии для прочих потребителей.

Сравнение двух стратегий показывает, что создание коммунальных ЛИЭС обеспечивает более быстрое снижение перекрестного субсидирования, чем введение опережающих темпов роста тарифов для населения


Рис. 41. Сокращение перекрестного субсидирования между группами потребителей при разных стратегиях

Локальный экономический эффект от поставок электроэнергии на РРЭ

Экономический эффект от выдачи электроэнергии в энергорайон определяется разницей между ценой ее продажи и дополнительными затратами на производство

Экономический эффект от снижения расхода топлива на производство тепловой энергии на мини-ТЭЦ определяется разницей экономии затрат на топливо и тарифом на тепловую энергию

Дополнительный доход от поставки электрической энергии на розничный рынок S^r :

$$S^r = \Delta W \cdot c^r$$

 ΔW – объем поставляемой на розничный рынок электроэнергии, МВтч; c^r – цена продажи электроэнергии на розничном рынке, руб./МВтч.

Максимально допустимый объем поставки электроэнергии на розничный рынок электроэнергии ΔW^{max} :

$$\Delta W^{max} = P^G \cdot (T^G_{max} - T^G)$$

 P^{G} – установленная электрическая мощность ГПУ, МВТ; T_{max}^{G} — максимально допустимый КИУМ ГПУ, ч.; T^{G} — КИУМ ГПУ, определенный исходя из работы в ЛИЭС, ч.

Экономический эффект от выдачи электроэнергии в энергорайон и поставки тепла в систему теплоснабжения:

$$F^{Q} = \Delta W^{max} \cdot (c^{Q} - b_{Q} \cdot c^{b}/q)$$

$$F^{P} = \Delta W^{max} \cdot (c^{P} - b_{P} \cdot c^{b}/q)$$

$$F^{r} = F^{Q} + F^{P}$$

 b_{P} - электрический УРУТ мини-ТЭЦ, т.у.т./МВтч;

 b_{O} - тепловой УРУТ мини-ТЭЦ, т.у.т./МВтч;

q –относительная теплотворная способность используемого на мини-ТЭЦ топлива;

 \dot{c}^b - удельная стоимость используемого топлива, тыс. руб./т.н.т; c^P - удельная цена на продаваемое от мини-ТЭЦ электричество, тыс.руб./МВтч,

 c^Q – удельная цена на продаваемую от мини-ТЭЦ тепловую энергию, тыс.руб./МВтч.

Эффект от участия в управлении спросом

Предоставление управляемого ресурса агрегатору управления изменением режима потребления

$$F^{DRr} = \sum_{i=1}^{12} m_j \cdot t^{DR} \cdot P^{DRr} \cdot c^{DRr}$$

$$P^{DRr} \leq P^G - P^{Smax}$$

$$P^{Smax} = P^{max} + P^r$$

 F^{DRr} – годовой эффект от передачи управляемого ресурса, тыс. руб.;

 m_i – количество дней в j -ом месяце, шт.;

i = 1...12 – порядковый номер месяца;

 t^{DR} – число часов готовности к оказанию услуги по управлению спросом в сутки, час;

 c^{DRr} – цена оказания услуги по передаче управляющего ресурса, определяется договором, тыс. руб./МВтч;

 P^{DRr} – мощность управляемого ресурса, определяемая из установленной генерирующей мощности мини-ТЭЦ, графика нагрузки потребителей ЛИЭС и выдаваемой в региональную систему электроснабжения, МВт;

 P^G — установленная мощность ГПУ, МВтч; P^{Smax} — максимальная мощность загрузки ГПУ по совмещенному графику, включая нагрузку потребителей ЛИЭС (P^{max}) и выдаваемую мощность на розничный рынок (P^r) , МВт.

Выполнение функции агрегатора управления изменением режима потребления электрической энергии

$$F^{DRA} = x \cdot P^{DRA} \cdot c^{DRr}$$

$$P^{DRA} \ge 0.1 \text{MB}$$

$$P^{DRA} \le P - P^{max} - P^r$$

 F^{DRA} – эффект агрегатора управления изменением режима потребления электрической энергии, тыс. руб.;

x — количество месяцев выполнения услуги, шт.;

 c^{DR} – цена оказания услуги по управлению спросом, указанная в ценовой заявке, тыс.руб./МВт;

 P^{DRA} – управляемая мощность агрегатора, МВт

Стоимость услуг по изменению энергопотребления в обеих ЦЗ в 2025 году ~ 514,6 тыс. руб./ МВт

Достаточно 100 часов в год (25 дней по 4 ч.) выполнения услуги регулирования потребления, чтобы окупить 1 МВт ГПУ китайского производства

Эффект от повышения бесперебойности электроснабжения и качества электроэнергии

ЛИЭС способна выполнять резервирование потребителей в зоне центра питания энергорайона, к которой присоединена ЛИЭС, что позволяет говорить *о снижении показателей SAIDI, SAIFI*.

При достижении плановых показателей надежности тариф СТСО на передачу электроэнергии может быть увеличен на 1–2%, а при их невыполнении — снижен на величину до 3%.

ЛИЭС Интеграция позволяет применять системы мультиагентного регулирования напряжения в сетях. Это электроснабжения и способствует повышает качество потерь в сетях. Если фактические потери снижению CTCO получает оказываются ниже нормативных, дополнительный доход за счет экономии на их компенсации.

→ Дополнительный доход СТСО от повышения надежности:

$$F^{Nun} = D^r \cdot u - F^{un}$$

Дополнительный доход ЛИЭС:

$$F^{un} = P^{un} \cdot c^{un}$$

 F^{Nun} – дополнительный доход СТСО от повышения бесперебойности электроснабжения, тыс. руб.;

u – корректирующий коэффициент к тарифу на передачу электрической энергии, %; D^r – доход сетевой компании от оказания услуг по передаче электроэнергии, тыс. руб. F^{un} – доход от выполнения функции резервирования, тыс. руб.;

 P^{un} — суммарная мощность резервируемых в энергорайоне потребителей, МВт; c^{un} — стоимость оказания услуг по резервированию потребителей, тыс. руб./МВт, что является предметом **договорных отношений**.

Экономия СТСО от снижения потерь:

$$F^{Nl} = c^{net_l} \cdot [(W_{is} - W_{int}) + \partial W_{110}] - F^l$$

 F^{Nl} – эффект СТСО от снижения потерь, тыс. руб.;

 c^{net_l} – затраты СТСО на компенсацию потерь в сетях, тыс. руб./МВтч;

 W_{is} — потери энергии в сети 10 кВ в режиме изолированной работы ЛИЭС, МВтч;

 W_{int} — потери энергии в исследуемой схеме при интеграции и выполнении заданных функций, МВтч;

 ∂W_{110} — изменение потерь в сети 110 кВ при параллельной работе ЛИЭС и выполнении заданных функций, МВтч;

 F^l — дополнительный доход от выполнения услуги повышения качества, тыс. руб.

Эффект от снижения углеродного следа

Выработка электроэнергии на ГПУ приведет к сокращению выработки электроэнергии на угольных ТЭС, что позволяет рассчитать экологический эффект!

Величина снижения выбросов СО2

$$\Delta E_{CO2} = E_{CO2}^{\ \ coal} - E_{CO2}^{\ \ G}$$

 $E_{CO2}{}^{coal}$ – выбросы CO_2 от производства электроэнергии в объеме ΔW на угольных ТЭС; $E_{CO2}{}^G$ – выбросы CO_2 от производства электроэнергии в объеме ΔW на ГПУ.

Расчет объема выбросов СО2

$$E_{CO2} = (EF_{CO2} \cdot Y \cdot b \cdot 29308)/1000)$$

 E_{CO2} — величина выбросов ${\rm CO}_2$ от сжигания топлива, тонн ${\rm CO}_2$ /ГДж; b — теплоемкость топлива;

Y – расход топлива в натуральном выражении, тонн.

Экологический эффект может быть монетизирован через механизм зеленых сертификатов, что требует соответствующих институциональных изменений, и выражен в виде экономического эффекта F^{ECO} .

Стоимостное выражение эффекта:

- 1. На примере Сахалинской области и в соответствии с ФЗ № 34-ФЗ от 06.03.2022, эффект может составить 78,3 млн. руб. (при расчете через систему штрафов).
- 2. Капитальные затраты на строительство эквивалентной СЭС составляют около **7 млрд. руб.**

Зеленые сертификаты

Красноярская ГЭС, ВЭС Фунтово, Светлинская ГЭС, Самарская СЭС, Краснополянская ГЭС, Майкопская ГЭС, Малая ГЭС на реке Бешенка, Медвеженская, Берестовская и Кузбминская ВЭС

Инвестиционная привлекательность ЛИЭС

Капитальные вложения

реконструкция котельной в **< 1,5 млрд. руб.** мини-ТЭЦ 20-25 МВТ

строительство мини-ТЭЦ 20-25 МВт с «нуля»

< 3 млрд. руб.

- Срок окупаемости < 5 лет</p>
 - Срок реализации объектов < 18 мес.

Повышение экономичности

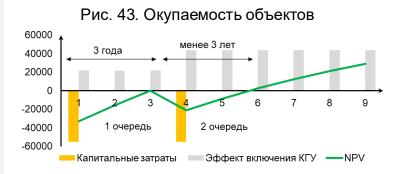
Поставка электроэнергии на

Выполнение функции агрегатора

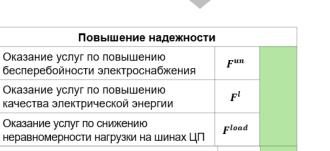
Предоставление управляемого

Повышение экологичности

розничный рынок


ресурса

Поочередный ввод объектов позволяет ускорить возврат инвестиций, получая доход от первой очереди, пока другие находятся в стадии строительства!!!


 $\mathbf{F}^{\mathbf{r}}$

FDRA

FDRr

+ коммерциализация системных эффектов

Механизм коммерциализации существует Предмет договорных отношений

Снижение углеродного следа

Срок окупаемости мини-ТЭЦ

$$\begin{split} NPV &= \sum_{i=1}^{n} \left[CF_i / (1+e)^i \right] \geq 0 \,, \\ CF_i &= E_i - CAPEX_i \,, \\ E_i &= \sum W_{Pj} \cdot c^P_j + \sum W_{Qj} \cdot c^Q_j - OPEX, \\ OPEX &= \left(B^G + B^K \right) \cdot \frac{1}{a \cdot c^b} + A + MC, \end{split}$$

$$E_i = \left[\sum W_{P_j} \cdot c^P_j + \sum W_{Q_j} \cdot c^Q_j \right] - \left[(B^G + B^K) \cdot 1/q \cdot c^b + A + MC \right],$$

e – ставка дисконтирования денежных потоков;

CF — годовой денежный поток;

i — порядковый номер года, начиная от года включения первого агрегата;

CAPEX – капитальные затраты, связанные с формированием ЛИЭС, тыс. руб.;

 E_i – годовой эффект от функционирования ЛИЭС, тыс. руб;

n – период рассмотрения;

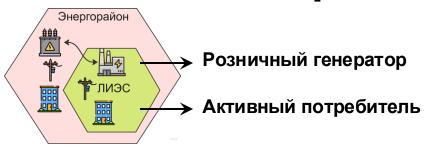
 W_{Pj} — электрическая энергия, МВтч, выработанная на ГПУ и проданная оператором ЛИЭС j-му потребителю по цене (тариф на категории населения) $c^{P}_{\ j}$, руб/МВтч;

 W_{Q_j} – тепловая энергия, МВтч, выработанная на ГПУ и котельном оборудовании и проданная оператором ЛИЭС j-му потребителю по цене ${\bf c}^{Q}_{i}$, руб/МВтч;

OPEX — эксплуатационные расходы, включающие затраты на обслуживание оборудования (MC), амортизацию (A), топливные затраты (B), тыс. руб;

 B^G — энергия топлива на ГПУ для производства тепловой и электрической энергии, МВтч;

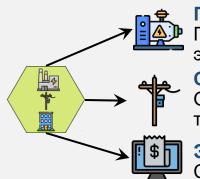
 B^{K} – энергия топлива на котелах для производства тепловой энергии, МВтч;


q – удельная теплота сгорания топлива, МВтч/тыс. м³;

 c^b – стоимость топлива, тыс. руб./тыс. м³;

A – амортизация основного оборудования, тыс. руб.;

МС – затраты, связанные с обслуживанием оборудования, тыс. руб.


Роль ЛИЭС на розничном рынке электроэнергии

Наиболее экономически целесообразным для хозяйствующих субъектов представляется заключение прямых договоров купли-продажи по фиксированной долгосрочной цене.

Однако, помимо традиционной роли поставщика, ЛИЭС может выполнять иные функции для достижения системных эффектов.

Функциональное разделение деятельности

Генерирующая компания

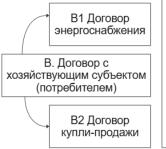
Производство тепловой и электрической энергии

Сетевая организация

Оперативное управление электрическими и тепловыми сетями

Энергосбытовая организация

Сбыт и биллинг


Рис. 44. Возможные варианты работы розничного генератора на розничном рынке электрической энергии

А. Договор купли продажи с гарантирующим поставщиком

- + Простота договорной конструкции
 Продажа всего объема энергии
 Взаимная заинтересованность
 Реализуемость на любом розничном рынке электроэнергии
- Ценовой риск, определяемый условием продажи не выше цены на оптовом рынке электрической энергии и мошности

Б. Договор купли продажи с территориальной сетевой организацией

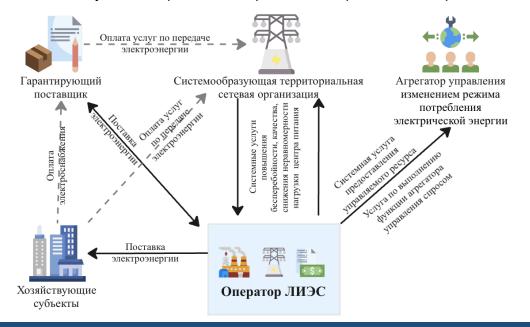
- Простота договорной конструкции
 Дополнительный доход в сравнении с продажей гарантирующему поставщику
 Взаимная заинтересованность
 Реализуемость на любом розничном рынке электроэнергии
- Удлинение цепочки взаиморасчетов, включающей гарантирующего поставщика Усложнение расчетов при покрытии части потерь территориальной сетевой организации покупкой у гарантирующего поставщика

- Максимальный доход в сравнении с другими стратегиями Реализация клиентноориентированных механизмов работы Реализуемость на любом розничном рынке электроэнергии
- Сложная договорная конструкция
 Работа с большим количеством потребителей
 Взаимодействие нескольких субъектов, включая гарантирующего поставщика и
 территориальную сетевую организацию
 Риск бездоговорного потребления
 Риск возникновения выпадающих доходов гарантирующего поставщика и

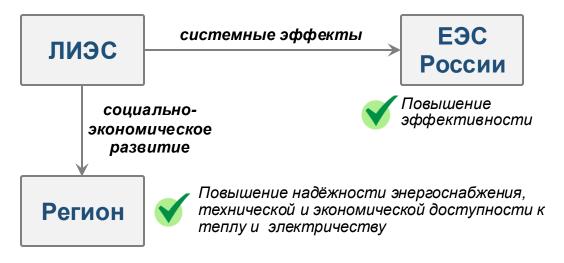
Допущения:

Генератор присоединен к сетям системообразующей территориальной сетевой организации и оснащен надлежащими приборами учета.

территориальной сетевой организации


• Генератор является субъектом исключительно розничного рынка, без выхода на оптовый рынок.

Институциональная среда развития распределенной энергетики


Оператор ЛИЭС

Вертикально-интегрированная структура консолидирует экономическую и юридическую ответственность за бесперебойность энергоснабжения, упрощает взаимодействие со стейкхолдерами и позволяет эффективно коммерциализировать системные услуги.

Рис.45. Предлагаемая модель организационно-экономических отношений субъектов розничного рынка электрической энергии

Программы развития региональной энергетики

Необходима разработка и реализация программ развития распределенной энергетики!

Электроснабжение + Теплоснабжение

Необходима согласованность взаимодействия органов исполнительной власти муниципального, регионального и федерального уровней по формированию благоприятной институциональной среды, обеспечивающей инвестиционную привлекательность проектов ЛИЭС.

Заключение

- 1. Текущее состояние ЕЭС России результат конъектурно-оперативных реакций на различные вызовы. Планы развития электроэнергетики часто расходятся с реальностью из-за множества факторов, главным из которых является неточность прогнозов спроса на электроэнергию и сроков ввода нового генерирующего и сетевого оборудования. Реактивный подход к развитию приводит к необходимости ситуативно менять планы, что, как показывают события 2025 года, ведёт к незапланированным расходам и увеличению стоимости электроэнергии.
- 2. Возникли новые условия, требующие пересмотра подходов к управлению развитием ЕЭС России. Строительство новых крупных электростанций должно быть направлено не на покрытие гипотетического дефицита мощности, а на замещение устаревшего оборудования и модернизацию неэффективных электрических станций.
- 3. Объектам распределённой энергетики отводится новая роль: подготовка спроса для будущей крупной генерации. Предлагается изменить отношение к распределённой генерации, которая не заменяет, а дополняет крупные электростанции, постепенно трансформируя иерархическую структуру энергосистемы в ячеистую, что соответствует современным тенденциям к децентрализации.
- 4. В настоящее время распределённая энергетика успешно конкурирует с удалёнными от потребителей крупными электростанциями, сокращая объёмы передачи энергии по сетям, что вызывает противодействие со стороны крупных субъектов отрасли, чьи интересы часто защищает государство.
- 5. Потребители, стремясь к повышению бесперебойности, снижению затрат и энергетической независимости, массово вводят объекты распределённой энергетики. Этот процесс будет нарастать и необходимо найти баланс интересов и учитывать процесс перехода к распределенной энергетике при проектировании развития энергосистемы.

Заключение

- 6. Основным объектом децентрализованного управления развитием должны стать энергорайоны. Без смещения фокуса на районные системы и ориентации на нужды конечных потребителей, эффективность ЕЭС России будет и дальше снижаться. Для привлечения частных инвестиций в развитие электроэнергетики необходимы реформы розничного рынка и институциональной среды, направленные на разрушение сложившегося консорциума естественных монополистов.
- 7. Интеграция в районные энергосистемы объектов распределённой энергетики, таких как ЛИЭС на основе мини-ТЭЦ, значительно повысит бесперебойность, техническую и экономическую доступность электроснабжения для потребителей. Для оказания ЛИЭС системных услуг и получения системных эффектов предлагается соответствующий методический инструментарий, обеспечивающий взаимовыгодное взаимодействие всех субъектов розничного рынка для повышения эффективности региональных энергосистем.
- 8. Из множества районных энергосистем приоритет следует отдавать энергорайонам, обеспечивающих электроснабжение малых городов, относящихся к опорным населенным пунктам. На этих территориях предлагается создавать мульти-энергетическую инфраструктуру для повышения эффективности производства тепловой и электрической энергии, сократив объем раздельного производства тепловой энергии.
- 9. Технологические и организационные инновации обеспечат повышение бесперебойности и доступности тепло- и электроснабжения, сокращая затраты на производство и передачу энергии. Появляется возможность предложить для малого и среднего бизнеса долговременные стабильные и доступные цены на энергию, а часть прибыли направить на модернизацию ветхих тепловых сетей, цифровизацию электрических сетей и прочее.
- 10. Инвестиционные проекты создания объектов распределенной энергетики должны быть нацелены на мультипликативный экономический эффект, позволяющий осуществлять их развития по принципу «снежного кома». Они наиболее эффективны на территориях, где нет высокой концентрации электрических нагрузок, т.к. в условиях тотальной газификации территорий стало выгоднее производить электроэнергию в близости к потребителям.

Технико-экономические эффекты от внедрения технологий распределенной энергетики в малых и средних городах

Спасибо за внимание!

Л.С. Мышкина

Lsmyshkina@gmail.com

Новосибирский государственный технический университет НЭТИ