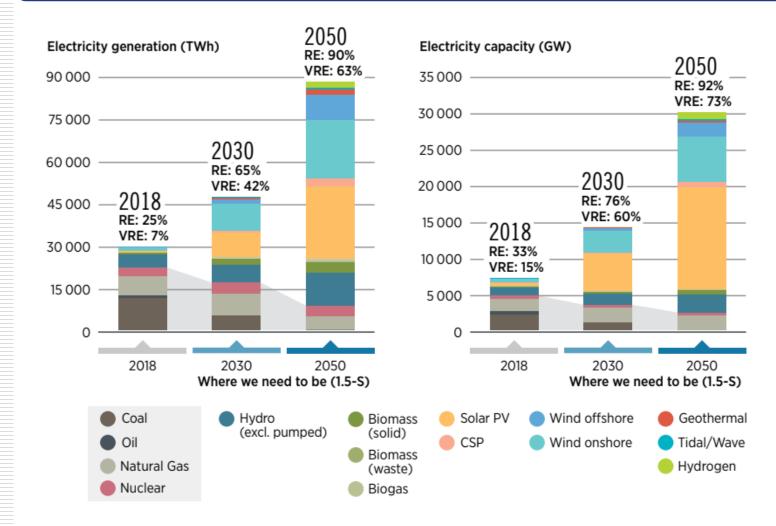
МОДЕЛИРОВАНИЕ РЕСУРСОВ ДЛЯ ОБЕСПЕЧЕНИЯ "ГИБКОСТИ" ЭНЕРГОСИСТЕМЫ В ЕЕ НИЗКОУГЛЕРОДНОЙ ПЕРЕСТРОЙКЕ

Руслан Аликин

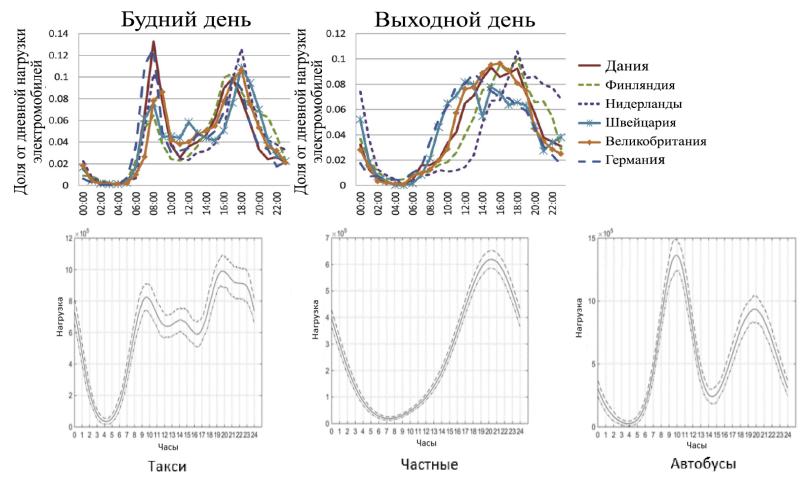
Институт энергетических исследований РАН

Сентябрь, 2023

Факторы гибкости энергосистемы

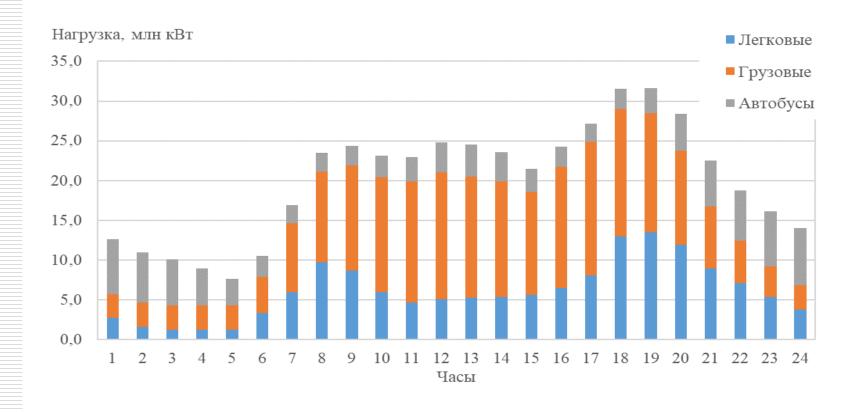

Гибкость энергосистемы – это ее способность быстро перестраиваться под колебания спроса или предложения

Источник: International Renewable Energy Agency (IRENA)


Структура электроэнергетики по сценарию 1.5°C

Источник: International Renewable Energy Agency (IRENA) World Energy Transitions Outlook: 1.5°, https://www.irena.org/Energy-Transition/Outlook/Renewable-energy-roadmaps

Суточные графики потребления энергии электромобилями

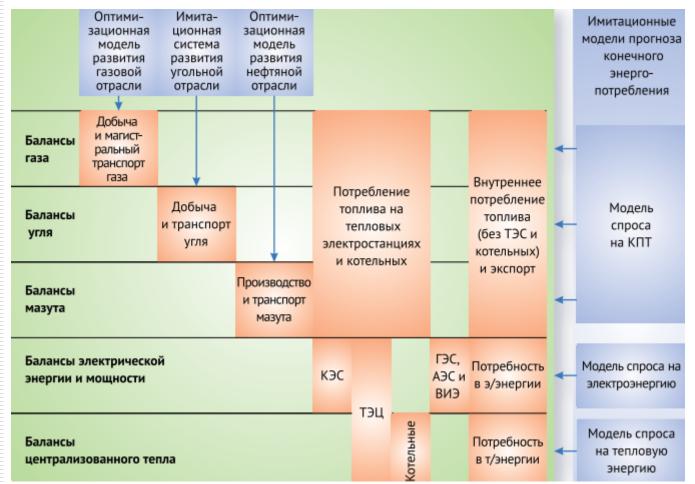


Источники: Babrowski S., Heinrichs H., Jochem P., Fichtner W. Load shift potential of electric vehicles in Europe // Journal of Power Sources, Vol. 255, p. 283 – 293.

Charging Load Forecasting of Electric Vehicle Based on Charging Frequency; To cite this article: H J Wang et al 2019 IOP Conf. Ser.: Earth Environ. Sci. 237 062008;

ИН ДИ

Оценка почасового суточного спроса на электроэнергию

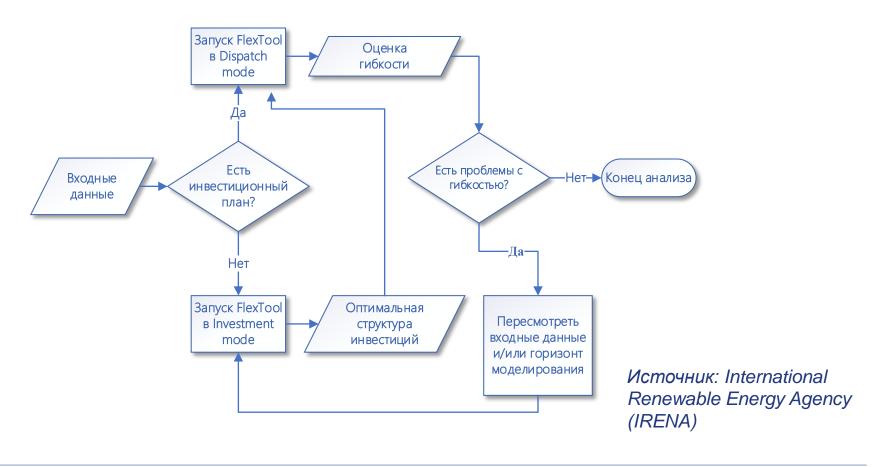


Источник: Соляник А.И., Веселов Ф.В., Аликин Р.О. Влияние электрификации в секторе дорожного транспорта на уровень электропотребления и суточный график нагрузки в ЕЭС России // Известия Российской академии наук. Энергетика. — 2023. — № 1. (в печати)

EPOS

EPOS — линейная динамическая оптимизационная модель развития электрогенерирующих мощностей и межсистемных связей в ЕЭС России

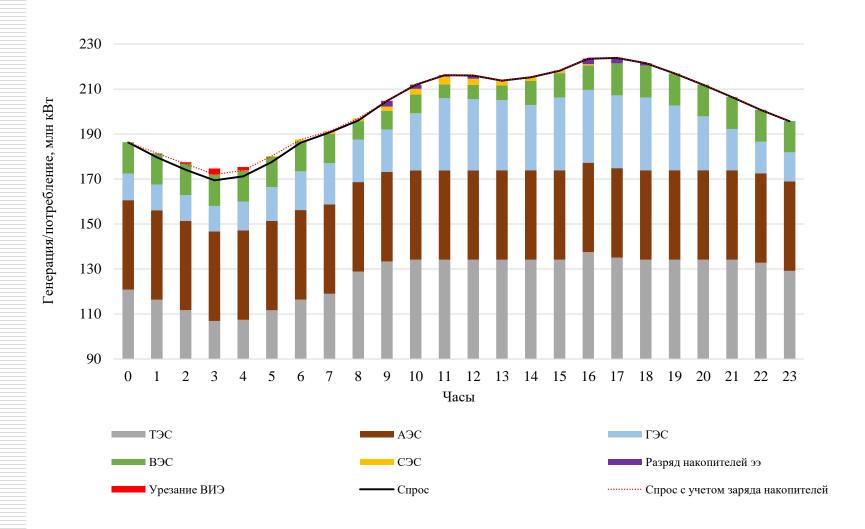
Источник:
Макаров А.А.,
Веселов Ф. В.,
Елисеева О. А.,
Кулагин В. А.,
Малахов В. А.,
Митрова Т. А.
Филиппов С. П.
SCANER
Суперкомплекс
активной
навигации в
энергетических
исследованиях
ИНЭИ РАН, 2011


Требования к диспетчеризационной модели

- ❖ Возможность совместного моделирования функционирования различных сегментов энергосистемы
- ❖ Достаточно высокий уровень технологической и временной детализации, для объективного моделирования различных технологий энергетики и их взаимодействия
- ❖ Достаточный горизонт моделирования, минимум в год для того, чтобы учесть внутригодовые неравномерности в графиках нагрузки потребителей и возможностях загрузки мощности разных типов электростанций,
- ❖ Возможность поиска экономически оптимального решения и анализа ценовых последствий,

FlexTool

FlexTool – модель на базе задачи линейного программирования для оптимизации отпуска (диспетчеризации) энергии.



Структура установленной мощности

	Сценарии									
Типы электростанций	1	2	3	4	5					
ГВт										
ТЭС	150,7	171,3	183,9	150,7	150,7					
АЭС	42,1	48,2	42,1	75,3	42,1					
вэс	15,7	15,6	15,7	15,7	37,3					
СЭС	5,4	6,8	5,4	5,4	17,1					
ГЭС	50,2	52,1	50,2	50,2	50,2					
Накопители	2,5	5,7	2,5	2,5	2,5					
Всего	266,6	299,8	299,8	299,8	299,8					
Изменение в % относительно 1 варианта										
ТЭС	0.0	13,7	22,0	0,0	0,0					
АЭС	0.0	14,5	0,0	78,9	0,0					
вэс	0.0	-0,6	0,0	0,0	137,6					
СЭС	0.0	25,9	0,0	0,0	216,7					
ГЭС	0.0	3,8	0,0	0,0	0,0					
Накопители	0.0	128,0	0,0	0,0	0,0					
Всего	0.0	12,5	12,5	12,5	12,5					

Почасовая выработка электроэнергии в 2050 году для условий зимнего рабочего дня (сценарий 5)

Источник: расчеты ИНЭИ РАН

Результаты анализа

Варианты	1	2	3	4	5			
	КИУМ в %							
ТЭС	58.87	59.00	58.13	51.00	65.46			
вэс	27.97	27.97	27.97	27.97	27.97			
СЭС	19.76	19.81	19.76	19.76	19.39			
АЭС	90.85	90.85	90.85	90.72	90.85			
ГЭС	44.04	42.49	44.04	44.04	44.04			
Накопители	13.67	25.63	33.82	36.9	33.03			
	Изменение в % относительно 1 варианта							
Стоимость эксплуатации								
(совокупные затраты)	0.00	12.04	15.49	-8.60	12.88			
Выбросы СО2	0.00	12.55	13.51	-13.20	12.37			
Средневзвешенная								
спотовая цена	0.00	0.18	-7.72	-14.17	15.50			

Источник: расчеты ИНЭИ РАН

Институт энергетических исследований РАН

www.eriras.ru info@eriras.ru ruslanalikin@bk.ru

Спасибо за внимание!